首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
宇宙线是来自外太空的唯一物质样本,携带着粒子物理、高能天体物理、宇宙物质组成及其演化的丰富信息.已知的宇宙线粒子最高能量约为3×10~(20) eV."宇宙线是如何被加速的?""其起源天体是什么?""在这样的高能情况下,已知的物理学规律是否还能适用?"等这些都是有待解决的重大科学问题.为此人们通过多种实验手段在空间和地上开展宇宙线的多信使研究.在过去的几十年里,宇宙线、伽马射线和中微子观测取得了丰富的成果:(1)宇宙线能谱、成分和各向异性的测量精度达到了史无前例的水平,极高能宇宙线的偶极各向异性表明这些粒子来自银河系之外;(2)空间实验发现了3000多个GeV伽马源,地面实验发现了近200个TeV源,它们大多为高能电子源,有几个已被认证为强子源;(3)冰立方实验发现了近百个高能中微子,它们的各向同性分布暗示着河外起源.这些新结果为解决宇宙线的起源问题和发展相关的粒子加速理论奠定了基础.新一代更高灵敏度的实验装置的建设和运行正在开启宇宙线粒子天体物理研究的新篇章.  相似文献   

2.
一、地下宇宙线的特点近一、二十年来,虽然高能加速器有了很大的发展,但是,宇宙线的观测和研究仍然受到广泛的重视。在高能物理方面,加速器迄今达到的能量(10~(11)~10~(12)eV)仍远远低于宇宙线中已观测到的超高能粒子的能量(10~(20)~10~(21)eV);在空间物理和天体物理方面,宇宙线的研究则具有不可能为加速器所替代的特点。宇宙线的穿透能力和到达情况是多种多样的。例如:γ射线容易被大气强烈吸收,而中微子则能穿透  相似文献   

3.
宇宙γ射线暴(以下简称γ暴)是七十年代高能天体物理学中的重大发现。如同六十年代X射线源、射电脉冲星的发现一样,γ暴的发现也是偶然的,然而,又是空间科学发展的必然产物。这种γ射线的爆发短暂、高能、出现又无规则,因而吸引了许多实验和理论工作者。它们来自何方?是什么样的天体在怎样的过程中产生的?至今仍是一个诱人的谜。  相似文献   

4.
李整武 《科学通报》1957,2(10):297-297
加速后的质子或α粒子等带电重粒子和多种原子核类起反应而产生γ射线。γ射线的能量、谱线分布和产额是被冲击的原子核的一个标帜。这一标帜和带电重粒子的冲击能量也有确定的关系。如所周知,在原子核物理实验中,常利用这些事实来研究和冲击粒子起反应的靶子材料的情况。本文指出利用这样产生的γ射线作为同位素分析及技术应用的广泛可能性。  相似文献   

5.
自然信息     
γ射线源是一类新天体吗? 由于探测上的困难,γ射线天文学的进展受到了限制。非太阳γ射线天文的成就是在本世纪七十年代以来才取得的。观测γ射线的“小型天文卫星-B”(SAS—B)和宇宙线观测卫星“宇宙号-B”(COS-B)已发现了一些γ射线源。  相似文献   

6.
宇宙线是由奥地利物理学家赫斯在1912年高空气球实验中发现的.此后,人们在宇宙线的研究中发现了众多的基本粒子及其相互作用规律,中微子振荡的最早发现也来自太阳中微子和大气中微子实验.迄今为止,人们所知道的最高能量的粒子也来自于宇宙线的观测.宇宙线的起源、加速和传播是一个世纪科学问题,从中诞生了高能伽玛天文学、高能中微子天文学和极高能宇宙线天文学.目前,人们已经发现了为数众多的电子加速源,但作为宇宙线成分中最为主要的核子,其起源问题依然没有解决.精确测量宇宙线核子的成分和能谱,观测和研究高能伽玛射线、高能中微子及极高能宇宙线的产生地点和相关机制,有助于解决宇宙线的起源问题.此外,这些研究也是间接探测暗物质粒子,研究宇宙演化和新物理学规律的重要手段.  相似文献   

7.
丁林垲 《科学通报》1986,31(18):1374-1374
一、引言由于初级宇宙线强度随能量增加按负幂律迅速下降,收集超高能事例的探测器必须具有很大的接收因子。为了研究10~(15)—10~(17)eV的超高能强子作用,在西藏海拔5500m的甘巴拉山顶设置了灵敏面积为150m~2,一次实验的灵敏时间为一年的乳胶室。但是,超高能宇宙线粒子的强度太低,即便位置这么高,收集因子这么大的探测器,也难于记录到发生在乳胶室内的  相似文献   

8.
在航天飞机的飞行轨道所处的220~1000千米高度的宇宙空间,每立方厘米只有10~(10)-10~(16)个空气分子,按物理学的概念这已经是空气极端稀薄的世界。可是,也正因为空气成分近乎为零,太阳射线、重粒子宇宙线等有害射线才得以肆意横行,造成了一种严重威胁生命安全的环境。宇航服就是在这种极端环境下穿用的特殊服装,造价昂贵也贵得其所。1984年2月7日,美国宇航员布鲁斯完成第1例太空行走时,身上那套无系索背包式宇航  相似文献   

9.
机器人虽然还无法从事世俗的工作———如修剪草坪或者洗袜子———但它们却可以向你展现宇宙中的壮观景象。天文学家已经把程控望远镜用于巡天 ,借此来寻找来自深空的、短暂而巨大的高能爆发———γ射线暴 (以下简称γ暴 )。在经历了几年的努力之后 ,现在这些程控望远镜带来了惊人的结果。去年晚些时候 ,一颗X射线卫星向互联网预警系统发布了两个γ暴的位置。在几分钟内 ,地面上的程控望远镜就对准了这两个目标 ,并且拍摄到了低能光学波段的余辉照片。这两次观测向我们展示了惊人的结果 ,一个不同寻常的长时间爆发和一个极为短暂的爆发。…  相似文献   

10.
一天数次γ射线暴 (简称γ暴 )会从外太空抵达地球 ,γ暴仅持续几秒钟。由于持续时间短 ,γ暴的位置一直无法精确的测定 ,直到 1997年BeppoSAX卫星发现了γ暴之后持续数天的余辉。由卫星提供的精确位置使光学和射电天文学家能探测到持续几天至几个月的光学、射电余辉。在余辉退去之后 ,寄主星系就能被识别出来。通过对寄主星系红移值的测量 ,发现γ暴释放出巨大的能量。在极端情况下 ,γ暴GRB990 12 3释放了超过 10 54 尔格的能量 ,相当于一颗恒星的静止质能。现有的理论模型无法解释如此大规模的能量释放 ,导致了所谓的γ暴能源…  相似文献   

11.
自1912年发现宇宙线已近100年了,但宇宙线的起源之谜依然困扰着物理学家,因而被列为21世纪的11大科学难题之一.对甚高能γ射线天文学的研究最有希望在未来10~20年内揭开宇宙线起源之谜,我国宇宙线研究领域的物理学家因此提出了在海拔4300米的西藏雪域高原上建造"大型高海拔空气簇射观测站"(LHAASO)的计划,冲击"世纪之谜".  相似文献   

12.
宇宙线的发现已有六十多年的历史了,在这段时间里,它对高能物理的研究起了很重要的作用。一、历史的贡献人们早就注意到宇宙线粒子的能量比天然放射性粒子的能量高得多,因而最初的高能物理实验都是在宇宙线中进行的.1932年,安德逊(Anderson)在宇宙线中发现了正电子,这可以说是基本粒子物理学的开端.这以后的宇宙线实验推动了量子辐射理论的建立,对电子辐射光子、光子转换为电子对和在能量足够高时形成的级联簇射现象进行了研究.在这些研究中,发现了一种辐射特性比电子弱得多而又不是质子的带电粒子,后来测出它的质量约为电子质量的200倍,即μ介子.最初人们以为这就是汤川所预言的传递核力的介子,但随后的实验表明μ介子与原子核的作用是很弱的,它不可能是传递核力的介子;1947年,  相似文献   

13.
朱善农 《科学通报》1981,26(4):255-255
如果在原子核裂变时形成密度高于正常原子核的超密核,将会放出高能γ射线。我们用铅玻璃全吸收γ谱仪测量~(252)Cf自发裂变时放出的γ射线,着重搜索能量大于50兆电子伏的高能γ射线。实验用ZF_1型铅玻璃(大小为12×12×20厘米~3)的谱仪记录γ射线。强度约200裂变/秒的~(252)Cf  相似文献   

14.
张力 《科学通报》1990,35(3):185-185
近年来,人们已获得了大量较为精确的宇宙线核和电子的观测数据,这为宇宙线传播模型的研究提供了较好的实验数据。按照目前流行的宇宙线起源加速机制(如激波加速、费米加速等)都假定核和电子有相同形状的能谱,一般采用的源谱形式是q(E)=AE~(-(γ_0)),其中A是常数,E是能量,γ_0是源谱指数,如果用单泄漏箱模型处理观测到的核和电子成分,可有核的  相似文献   

15.
邓雪梅 《世界科学》2007,(10):24-26
宇宙线在未来的几年里将开始引人注目。到2012年,即宇宙线被发现100周年之际,新建成的超高能宇宙线天文台、高能γ射线和中微子天文台,将会一起来揭开宇宙线的神秘面纱,  相似文献   

16.
王克斌 《科学通报》1980,25(21):1007-1007
我们利用由无反冲原子核γ射线源和共振吸收体组成的γ射线谱仪,测量γ射线穿透介质的特性。实验时,用处于相对运动的~(57)Co源,使~(57)Fe的14.4千电子伏γ射线穿透碳、铝、铜等不同材料的  相似文献   

17.
统一基本相互作用模型暗示,存在着许多质量范围在10×10~9ev(10GeV)到100×10~(12)eV(100TeV)的粒子。在这些粒子中间,有些可能是荷电的粒子X~±,它们是稳定的或几乎是稳定的。X~ 粒子将会形成超重氢,而X~-粒子则往往结合在一些原子核上。化学分离天然存在的(?)(Tc)、钜(Pm)、锕(Ac)、镤(Pa)、镎(Np)、或镅(Am)将会表明超重粒子的存在,存在的形式是RuX~-、SmX~-、~(232)ThX~-、~(253,236,238)UX~-、~(244)PuX~-或~(247)CmX~-。其它值得探索的物质包括具有硼(B)、氟(F)、锰(Mn)、铍(Be)、钪(Sc)、钒(V),锂(Li)、氖(Ne)和铊(Te)化学性质的超重元素。  相似文献   

18.
曹臻 《科学通报》2022,(14):1558-1566
高海拔宇宙线观测站(Large High Altitude Air Shower Observatory, LHAASO)是110年来人类研究宇宙线最大的实验装置之一,核心的科学问题是寻找宇宙线的起源,不但要探测超高能(ultra-high energy, UHE)伽马射线源,还要精确测量地球附近带电宇宙线的成分和能量分布,系统地研究宇宙线的加速与传播.其首批科学发现就开创了UHE伽马天文学领域,展现出银河系丰富多彩的宇宙线加速源的候选天体,奠定了发现宇宙线起源的良好基础,指明了随后探索宇宙线加速机制、传播效应等精确研究的方向,同时也对现有的理论和模型提供了精确检验的机会与挑战. LHAASO的发现,对其后宇宙线、伽马天文、中微子天文等方面的未来实验研究提出了明确的要求.本文综述了我国大科学装置LHAASO及其科学发现意义,介绍了其在宇宙线研究中的历史作用,并对未来的发展做出了展望.  相似文献   

19.
蒋崧生 《科学通报》1992,37(4):350-350
~(36)Ar(n,p)~(36)Cl反应对研究大气中~(36)Cl的起源有着重要的意义。自然界的~(36)Cl(半衰期=3.01×10~5a)作为一种地质年代计和长寿命核素示踪剂在天体化学和地球科学研究中有着广泛应用前景。~(36)Cl的起源是自然界~(36)Cl核素应用研究方面的一个基本问题。到目前为止,人们认为大气层的~(36)Cl来源于两种核反应:一为中子引起的~(36)Ar(n,p)~(36)Cl反应,一为宇宙线高能粒子引起的~(36)Ar散裂反应,前者反应的~(36)Cl产生率大约为后者的1/3(地球表面降沉  相似文献   

20.
闵蔚宗 《科学通报》1985,30(23):1840-1840
重粒子放射现象是指某些重原子核自发地进行碳衰变或氧衰变,即是有可能发射出迄今已知的α、β、γ、中子、质子以外的碳原子核或氧原子核的现象。 A·Sandulescu等(Sov.J.Part.Nucl.,11(1980),528),及卢希庭(原子核物理,1981),分别提出镭和钍的一些核素,有可能自发地发射~(14)C、~(24)Ne、~(26)Mg……”,或~(12)C、~(16)O……等重荷电粒子。1984年国外报道了观测到镭-223发射碳-14的实验结果。 我们经过长期的研究,已经在实验上找出了证实~(12)C、~(14)C、~(16)O发射的证据。我们观测的对象是从陈旧钍盐中分离出来的~(228)Ra、~(224)Ra及其子体,源的α放射性计数率≤5×10~2计数/秒。用金硅面垒半导体探测器和4096道脉冲幅度分析器组成的α  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号