首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以β–环糊精(β-CD)为原料、环氧氯丙烷为交联剂、碳酸钙为致孔剂合成β–环糊精–环氧氯丙烷交联物(β-CDP)、碳酸钙致孔β-CDP(Ca-β-CDP),并用红外光谱对其进行表征.以这两种交联产物作为吸附剂对酸化后的桉木预水解液(PHL1)进行木素吸附实验,采用单因素实验分别考察吸附剂用量、吸附时间、吸附温度和吸附pH对木素吸附的影响,确定最佳吸附条件为:β-CDP用量12%(相对于PHL1质量)、吸附时间60,min、吸附温度30,℃、吸附pH为2.0,在此条件下木素最大去除率为57.9%;Ca-β-CDP用量为14%、吸附时间60,min、吸附温度30,℃、吸附pH 2.0,在此条件下木素最大去除率为55.4%.  相似文献   

2.
研究用硅烷偶联剂KH560做交联剂,以β-环糊精(β-CD)对TiO2固体表面进行改性,制备β-CD/TiO2复合材料.通过钛含量测定、红外和热重分析对β-CD/TiO2复合材料进行了表征.以甲基橙溶液为研究对象,分别考察了β-CD/TiO2复合材料和纯TiO2对甲基橙的光催化降解能力.结果表明:制得的β-CD/TiO...  相似文献   

3.
利用丙烯基溴改性的β-环糊精(β-CD)改性物(allyl-β-CD)与丙烯酸在引发剂偶氮二异丁腈作用下发生聚合反应,引入活性基团羧基后与钛酸丁酯反应,将二氧化钛接枝于β-CD聚合物(β-CDP)链上,得到β-CDP/TiO2有机-无机杂化电流变材料.通过FT-IR表征表明材料中有机-无机两相以化学键的方式键连,XRD和SEM表明无机相以无定形的形式存在,有机-无机两相高度相容.考察其电流变性能发现:β-CDP/TiO2杂化材料的屈服应力、剪切应力等电流变性能明显优于β-CDP和β-CD原料.此外,研究发现β-CDP/TiO2杂化材料的电流变效应与钛酸丁酯的加入量有很大关系,其中钛酸丁酯的加入量为40%时材料的电流变效果最佳.  相似文献   

4.
有机分子模板法合成二氧化钛及其光催化性能   总被引:1,自引:1,他引:0  
以有机分子β环糊精(β-CD)为模板剂,采用水热法制备了TiO2纳米粉体.利用XRD、BET 等手段对样品进行了测试.研究了模板剂添加量对粉体晶型、粒径、光催化性能的影响以及模板剂脱除方式对粉体比表面积的影响.结果表明,当β-CD/TiO2质量分数为60%时,其粒径最小为3.78nm,粉体具有较好的光催化效果;TiO2...  相似文献   

5.
利用新型碳材料还原氧化石墨稀对TiO_2进行改性,以期提高TiO_2的光催化活性.采用溶剂热法,以氧化石墨烯(GO)和钛酸四丁酯(Ti(OBu)4)为原料,成功制备了不同还原氧化石墨烯含量的RGO/TiO_2纳米复合材料.运用XRD、TEM、FT-IR和UV-vis等手段研究了复合材料的性质,同时以甲基橙(Methyl Orange,MO)为模型,评价了不同反应条件下制备的复合物的光催化性能,讨论了不同还原氧化石墨烯含量、催化时间等对复合物的光催化性能的影响.在甲基橙评价模型基础上,将制得的具有最佳光催化性能的RGO/TiO_2复合材料进行致病大肠杆菌的抗菌实验,以此来检验RGO/TiO_2纳米复合材料的抗菌效果.实验结果表明,采用溶剂热法在180℃下煅烧6h制得RGO/TiO_2纳米复合材料,锐钛矿相TiO_2通过C-O-Ti键均匀地分布在片层还原氧化石墨烯载体上.RGO/TiO_2复合材料对甲基橙溶液的降解率明显高于纯纳米TiO_2.当制备复合材料时GO的初始投加量为40mg时,制得的RGO/TiO_2复合材料对甲基橙的降解率达到50%.同时,该RGO/TiO_2纳米复合材料对致病大肠杆菌有明显的抗菌作用.  相似文献   

6.
文章利用溶剂热方法进行表面改性反应,成功制备了β-环糊精/TiO2纳米颗粒复合物(β-CD/TiO2)。FT-IR、UV-Vis、XRD、TGA的表征结果表明,含磺酸基(—SO3)的β-环糊精(β-CD)化合物分子是以化学吸附的方式键合在TiO2纳米颗粒的表面上,而不是简单的物理包覆。PL、UV-Vis和Raman光谱进一步表明,β-CD/TiO2纳米颗粒复合物对2,2′,6,6′-四氯联苯(PCB54)分子具有一定的吸附和包合能力,主要是由于β-CD的空腔与PCB54分子之间在疏水力的作用下,对PCB54分子进行识别和吸附,直至形成了一种稳定的分子间主客体包合物。  相似文献   

7.
敏化TiO_2多孔薄膜电极的制备及其光电化学研究   总被引:1,自引:1,他引:0  
以β环糊精(β-CD)为添加剂,通过改变β-CD的添加量,水热法制备多孔二氧化钛粒子,用XRD、N2adsorption-sorption等方法对其进行了表征.同时,利用这些颗粒制备出不同微观结构的纳米TiO2多孔薄膜,并利用电化学阻抗谱、光电流工作谱研究其敏化纳米TiO2多孔薄膜电极的光电化学行为.结果表明:随β-CD的加入量逐渐增加,电极的阻抗弧半径和TiO2/电解质溶液界面的转移电阻Rct数值逐渐变小、电容CPE数值及光电流IPh逐渐增大,当β-CD/TiO2=40%时,上述几个参数均为最佳值.  相似文献   

8.
采用类Stober法,以钛酸正丁酯为钛源,反应温度为130℃,可控制备粒径尺寸均一的单分散TiO_2纳米微球.通过调节反应时间、溶液的pH值,单分散TiO_2纳米微球的直径可以在几十到一千纳米范围内被精确调控.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)仪对所制备的TiO_2纳米微球进行了表征.结果显示样品为无定形结构,可通过进一步的水热晶化提高样品的结晶度.此单分散TiO_2纳米微球有望在光催化机理研究、太阳能敏化电池、光子晶体等方面具有很好的应用.  相似文献   

9.
制备 Ti O2 ,Fe2 O3 ,Zn O超细粉 ,采用 XRD对制得的超细粉进行结构、粒径表征 .考察不同粒径的超细粉和普通商品 (体相 ) Fe2 O3 ,Ti O2 ,Zn O对庚烷的光催化反应 .结果表明 ,光催化活性大小的顺序为 Ti O2 (锐态矿型 ) >Zn O>Fe2 O3 ,锐钛矿型 Ti O2 光催化活性较金红石型 Ti O2 好 ,对于同一结构的粒子来说 ,粒径越小 ,光催化活性越高  相似文献   

10.
采用水热法制备出TiO_2及其TiO_2/石墨烯纳米复合物,通过XRD、SEM、TEM等对材料晶型、TiO_2纳米颗粒在体系中的微观结构及分散状态进行了表征,利用紫外-可见漫反射谱对材料在可见光区的响应进行了研究,并通过在可见光照射下降解甲基橙溶液评价了TiO_2/石墨烯纳米复合物具有比纯TiO_2更高的光催化活性.结果表明,水热反应温度为200℃,反应时间为24h制备出的TiO_2/石墨烯纳米复合物具有最高的可见光催化活性,当TiO_2/石墨烯纳米复合物在12mg/L甲基橙溶液中的投入量为1g/L时,在3min内的降解率达99.9%.  相似文献   

11.
采用紫外吸收光谱法研究了β-CD/Fe3O4磁性纳米复合物、HP-β-CD/Fe3O4磁性纳米复合物和SBE-β-CD/Fe3O4磁性纳米复合物对布洛芬(IBU)的负载作用。不同β-CD衍生物修饰的Fe3O4磁性纳米复合物对IBU的负载能力不同,最大负载量分别为7.39mg/g、3.12mg/g和10.25mg/g。相溶解度实验表明:三种磁性纳米复合物都可以增加IBU的溶解度,增溶倍数依次为8.14倍、3.64倍、38.88倍,SBE-β-CD/Fe3O4磁性纳米复合物的增溶效果最明显。  相似文献   

12.
以羟丙基-β-环糊精(HP-β-CD)为添加剂修饰碳纳米管为复合载体,常温常压下,成功合成了Pd纳米簇状结构,并用于甲酸的电催化氧化.XRD及TEM结果表明,制备出的Pd纳米簇状结构由粒径均匀,约为3.6nm的纳米颗粒组成,且高度分散沉积在载体表面.循环伏安测试结果表明,催化剂Pd/HP-β-CD-MWCNTs对甲酸氧化表现出了较高的催化活性和电化学比表面积.研究表明,在HP-β-CD存在条件下,将Pd纳米簇沉积在未作处理的碳纳米管上制备的催化剂适合应用于甲酸燃料电池.  相似文献   

13.
以羟丙基-β-环糊精(HP-β-CD)为添加剂修饰碳纳米管为复合载体,常温常压下,成功合成了Pd纳米簇状结构,并用于甲酸的电催化氧化.XRD及TEM结果表明,制备出的Pd纳米簇状结构由粒径均匀,约为3.6nm的纳米颗粒组成,且高度分散沉积在载体表面.循环伏安测试结果表明,催化剂Pd/HP-β-CD-MWCNTs对甲酸氧化表现出了较高的催化活性和电化学比表面积.研究表明,在HP-β-CD存在条件下,将Pd纳米簇沉积在未作处理的碳纳米管上制备的催化剂适合应用于甲酸燃料电池.  相似文献   

14.
复合纳米Fe2O3/TiO2的制备、表征及光催化活性   总被引:4,自引:0,他引:4  
采用将TiO2加入Fe(OH)3胶体中的方法制得复合的Fe2O3/TiO2纳米粒子.以光催化降解甲胺磷研究其光催化活性,并通过XRD、TEM、DRS等分析方法,探讨了影响其光催化活性的原因.结果表明,Fe2O3的复合量对Fe2O3/TiO2的活性影响很大,当n(Fe)n(Ti)<0.3%时,复合物Fe2O3/TiO2的光催化活性大于TiO2,最佳的复合量为0.2%.当复合量大于0.5%时,复合物Fe2O3/TiO2的光催化活性低于TiO2.锻烧温度及锻烧时间对复合物Fe2O3/TiO2光催化活性均有影响.用XRD确定掺杂前后TiO2的晶型均为锐钛矿型,当复合量大于0.7%时才能看到Fe2O3的衍射峰.TEM照片表明,由于复合量小,复合前后颗粒直径和晶粒直径基本一致.反射率光谱图表明,在360~650 nm范国内复合物Fe2O3/TiO2吸收光的性能比TiO2好,亦即增强了对可见光的吸收.  相似文献   

15.
复合纳米Fe2O3/TiO2的制备、表征及光催化活性   总被引:17,自引:1,他引:17  
采用将TiO2 加入Fe(OH ) 3 胶体中的方法制得复合的Fe2 O3 /TiO2 纳米粒子 .以光催化降解甲胺磷研究其光催化活性 ,并通过XRD、TEM、DRS等分析方法 ,探讨了影响其光催化活性的原因 .结果表明 ,Fe2 O3 的复合量对Fe2 O3 /TiO2 的活性影响很大 ,当n(Fe)∶n(Ti) <0 .3%时 ,复合物Fe2 O3 /TiO2 的光催化活性大于TiO2 ,最佳的复合量为0 .2 % .当复合量大于 0 .5 %时 ,复合物Fe2 O3 /TiO2 的光催化活性低于TiO2 .锻烧温度及锻烧时间对复合物Fe2 O3 /TiO2 光催化活性均有影响 .用XRD确定掺杂前后TiO2 的晶型均为锐钛矿型 ,当复合量大于 0 .7%时才能看到Fe2 O3 的衍射峰 .TEM照片表明 ,由于复合量小 ,复合前后颗粒直径和晶粒直径基本一致 .反射率光谱图表明 ,在 36 0~ 6 5 0nm范围内复合物Fe2 O3 /TiO2 吸收光的性能比TiO2 好 ,亦即增强了对可见光的吸收  相似文献   

16.
介绍杨木粉接枝β-环糊精(β-CD)的制备方法,采用柠檬酸(CA)为交联剂,将杨木粉接枝到β-环糊精上.探讨了反应温度、反应物配合比、对木粉的不同处理方法等因素对该接枝反应的影响.木粉-β-环糊精合成的最佳条件为:首先合成柠檬酸-β-环糊精,然后在这个反应体系中,控制木粉与柠檬酸-β-环糊精的质量比为1∶9,反应温度100℃,反应时间2.5h,木粉-β-环糊精中β-环糊精的含量最高,为19.37μmol·g-1.  相似文献   

17.
在β-环糊精(β-CD)溶液中,用柠檬酸三钠还原AgNO3制备了银纳米粒子,以银纳米粒子为品种,用水合肼还原CuSO4制备Ag-Cu双金属纳米粒子,并用紫外-可见光谱(Uv-vis)、透射电子显微镜(TEM)、选区电子衍射(SAED)、X射线粉末衍射(XRD)等表征所制备的Ag-Cu双金属纳米粒子.用循环伏安法对Ag-Cu双金属纳米粒子修饰的玻碳电极的电化学性能进行测试,实验结果表明Ag-Cu双金属纳米粒子对H2O2的电化学氧化基本没有催化作用.  相似文献   

18.
以聚乙烯吡咯烷酮、钛酸正丁酯和氯化铁为前驱体,利用静电纺丝法制备了Fe2O3/Ti O2复合纳米纤维.采用SEM,XRD,FT-IR和UV-Vis DRS等测试手段对纤维的形貌和结构进行了表征.通过对罗丹明B染料的光催化降解实验,探讨了煅烧温度和Fe2O3的含量对光催化性能的影响.结果表明:Fe2O3/Ti O2复合纳米纤维中Fe3+进入到Ti O2的晶格,从而改变了Ti O2的光谱响应范围.煅烧温度为600℃,0.5%(质量分数)Fe2O3含量的Fe2O3/Ti O2复合纳米纤维,在可见光范围具有良好的光催化活性.  相似文献   

19.
采用石墨烯/TiO_2复合材料对染料废水进行光催化降解.研究染料废水初始pH值、初始浓度、催化剂的加入量、不同系列染料(罗丹明B(rhodamine B,Rh B)、亚甲基蓝(methylene blue,MB)、甲基橙(methyl orange,MO))对石墨烯/TiO_2光催化性能的影响,结果表明石墨烯/TiO_2光催化降解染料废水的最佳条件:溶液初始p H值为6,染料废水初始浓度为25 mg/L,石墨烯/Ti O2为3 g/L,且60 min内罗丹明B溶液完全脱色.  相似文献   

20.
以硫酸钙(CaSO_4)晶须为载体,以二氧化钛(TiO_2)为负载物,制备了二氧化钛/硫酸钙(TiO_2/CaSO_4)晶须复合物,并以叶绿素铜钠为敏化剂对其进行敏化处理。采用X-射线衍射(XRD)、扫描电镜(SEM)和紫外可见吸收光谱(UVVis)对样品进行表征。利用该复合物对亚甲基蓝溶液、Cr~(6+)溶液以及双龙湖湖水进行了光催化降解。XRD和SEM结果表明所制备的TiO_2/CaSO_4复合物直径在5μm~10μm,表面负载了锐钛矿型TiO_2纳米颗粒。紫外可见吸收光谱(UV-Vis)表明敏化后的复合物在360 nm~800 nm响应较大,并在410 nm和640 nm处有明显的吸收峰。光催化结果表明TiO_2/CaSO_4复合物在可见光下的光催化性能好于纯相TiO_2粉末,叶绿素铜钠敏化后的TiO_2/CaSO_4复合物可见光催化性能显著提高,并可有效降低湖水中氨氮和COD。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号