首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用循环伏安法分析了硼氢化钠(Na BH_4)在金(Au)电极上的电化学氧化还原行为,在-0.473 V电位处发现了比较明晰且稳定的BH_4~-特征氧化峰,可作为BH_4~-存在的定性判据。通过线性伏安扫描,对浓度为1.0×10~(-4)~9.0×10~(-3)mol/L的Na BH_4碱性溶液进行了测定,发现Na BH_4特征氧化峰的峰值电流与其浓度呈良好的线性关系,相关系数为0.998 4。利用线性伏安法分别对5.0×10~(-4)mol/L Na BH_4+0.10 mol/L Na OH溶液和5.0×10~(-3)mol/L Na BH_4+0.10 mol/L Na OH溶液平行测定5次,所得结果的平均相对误差分别为3.18%和1.63%,相对标准偏差分别为2.38%和1.88%。  相似文献   

2.
针对贵金属纳米粒子稳定性差,容易发生团聚造成催化活性低的问题,以多级孔TiO_2为载体,利用其介孔孔道限制贵金属纳米粒子团聚,采用浸渍法制备Au-Pd双金属纳米催化剂.通过X射线衍射(XRD)、透射电子显微镜(TEM)等分析手段对催化剂进行表征,结果表明金钯纳米粒子均匀地分布在TiO_2载体上,尺寸约为3~5nm.选择CO氧化反应评价催化剂活性,考察催化剂制备过程中金钯比例对催化活性的影响.结果表明,在120℃的条件下催化剂Au_1-Pd_4/TiO_2达到最高的转化率90%,这归结于双金属间的电子协同效应,金原子从钯原子上吸电子,导致钯原子缺电子,而CO分子提供电子给钯原子,提高了催化活性.  相似文献   

3.
利用密度泛函理论(DFT)对表面未/金修饰的截角八面体铂纳米粒子的电化学稳定性进行了对比研究。溶解电位计算结果表明:纯Pt纳米粒子的表面棱边位置配位高度不饱和,电化学稳定性较差;对于Pt_(177)Au_(24)、Pt_(141)Au_(60)和Pt_(135)Au_(66)三个表面金修饰的纳米粒子,发现Pt_(135)Au_(66)纳米粒子有更好的电化学稳定性且对其平整表面活性位点的催化性能没有影响。这些结果意味着以痕量Au表面掺杂提高Pt纳米粒子的电化学稳定性是可行的策略。  相似文献   

4.
应用胶体粒子模板法制备不同壳层厚度的CocorePdshell纳米电催化剂。TEM、XRD和EDS证实,CocorePdshell纳米粒子基本为球形,面心立方晶型(fcc)Pd成功包覆在纳米金属Co的表面,其中,Co1Pd2纳米粒子平均直径约10 nm且粒径分布较窄。动电位、交流阻抗、循环伏安及原位傅里叶变换红外反射光谱等电化学测试结果表明:与Pd/C相比,CocorePdshell/C纳米粒子对氧还原反应(ORR)的活性有明显的提高,甚至接近于Pt/C;抗甲醇能力非常优异,对甲醇氧化几乎无活性;不同壳层厚度催化剂中,以Co1Pd2/C催化剂的活性最高,在0.5 mol/L H2SO4中氧还原峰电流密度可达175.5 mA/mg,比Pt/C的要高出20 mA/mg。  相似文献   

5.
以氧化石墨烯(GO)、醋酸铜、醋酸钴为原料,采用溶剂热法成功地合成复合载体GO/CuCo_2O_4,再通过浸渍还原法成功地将Pd、Pd-Bi纳米粒子负载到GO/CuCo_2O_4载体上,并用于碱性介质中乙二醇(EG)的电催化氧化.实验结果表明,双金属催化剂PdBi@GO/CuCo_2O_4对乙二醇的电催化氧化具有最高的催化活性和稳定性,优于目前商用Pd/C和单Pd负载型催化剂,其正向峰电流密度达到122. 7 mA·cm~(-2),是商用Pd/C (29. 57 mA·cm~(-2))的4. 1倍.这种优良的电催化性能归功于载体GO/CuCo_2O_4为双金属负载提供独特的骨架结构,以及Pd-Bi纳米粒子之间强烈的协同作用.而且,氧化石墨烯引入到CuCo_2O_4中有利于增强电子转移和增大接触面积,从而提高乙二醇的电催化氧化.这种新型催化剂的制备为发展高效Pd基电催化氧化直接醇类燃料电池提供新途径,具有较好的应用价值.  相似文献   

6.
采用化学共还原法制备了聚乙烯吡咯烷酮(PVP)稳定的Au/Ag/Ni三金属纳米溶胶颗粒,通过UVVis、SEM/EDS、TEM等对所合成的纳米溶胶颗粒进行表征,研究了化学组成对其催化水解NaBH_4制氢活性的影响。结果表明,所制Au/Ag/Ni三金属纳米颗粒的平均粒径约为2.0nm,其中Au_(10)Ag_(40)Ni_(50)三金属纳米颗粒的催化活性最佳,30℃时其催化活性达2548mol_(H2)/(mol_(Pt)·h)。密度泛函理论(DFT)的计算结果表明,Au/Ag/Ni三金属纳米团簇内部由于产生电荷转移效应,原子间的电子转移使得Ag带正电而Au带负电,带电原子成为催化水解NaBH_4的活性中心,使得材料具有优异的催化制氢性能。  相似文献   

7.
采用电沉积法负载的氧化石墨烯(Graphene Oxide,GO)薄膜,在电化学辅助还原的作用下成功制备了还原态氧化石墨烯(Reduced Graphene Oxide,r GO)/金纳米粒子(Au NPs)@多金属氧簇(P2W18)纳米杂化薄膜。制备过程可在1 h内完成。所制备的{PEI/r GO/Au@P2W18}电极仅负载单层催化剂,DPV法检测尿酸(UA)具有良好的线性关系(5.00×10-7~1.50×10-4mol/L),较低的检出限(1.24×10-8mol/L),优良的灵敏度85.98 A/(mol/cm2),重现性好。r GO、P2W18和Au NPs的协同作用,尤其是在薄膜制备过程中发生的电子转移增强了催化剂的催化性能。实验证明该传感器可用于血样中尿酸的测定,回收率为95.0%~97.5%。  相似文献   

8.
采用等体积浸渍法制备了3种不同助剂的Au/Fe Ox/Al2O3、Au/Ce O2/Al2O3、Au/Ti O2/Al2O3纳米金复合催化剂,其中Au负载量为1%(质量分数).利用XRD、BET和透射电镜(TEM)技术对催化剂进行表征,并通过室温催化氧化甲醛进行活性评价.结果表明:在3种不同助剂的复合催化剂中,Au/Fe Ox/Al2O3、Au/Ce O2/Al2O3表现出较好的甲醛催化氧化活性.其中,1%Fe Ox为助剂的复合催化剂的甲醛完全转化率最高.  相似文献   

9.
以Pt5/C为基底,采用强迫沉积法得到Rh0.5@Pt5/C、Pt0.1Rh0.5@Pt5/C和Pt0.1Rh0.5Pt0.1@Pt5/C三种不同结构的沉积层,在400℃下焙烧4 h后制得了表面组成不同的PtRh@Pt5/C双金属催化剂.通过循环伏安法(CV)和X-射线衍射(XRD)对基底Pt5/C和催化剂进行了表征,并研究了他们在甲醇电化学氧化中的催化性能.结果表明,PtRh@Pt5/C双金属催化剂的催化活性和抗CO中毒能力明显优于基底Pt5/C,且表面组成对催化剂的活性影响很大,其中以"三明治"式沉积层焙烧后制得的催化剂(Pt0.1Rh0.5Pt0.1@Pt5/C)形成了微晶或非晶态的PtRh表面合金,对甲醇氧化的催化效果最好,甲醇在其表面氧化的峰电流密度提高了90%以上,氧化电势也降低了约30 mV.  相似文献   

10.
采用第一性原理对Au_(n-1)Ag(n=1-5)团簇所有异构体吸附在TiO_2(110)表面的负载构型进行了结构优化,并分析了负载团簇的最稳定结构的电子性质.研究结果表明:在较稳定的吸附构型中,团簇都与TiO_2表面的两配位的氧(O_(2c))相连接.将不稳定的Au3Ag异构体负载在TiO_2表面后稳定性明显提高.能量分析表明,负载的Au_3Ag为最稳定体系.根据bader电荷和DOS分析,吸附Au_(n-1)Ag(n=1-5)团簇后,有电子从金属团簇转移到吸附基底上.Au_(n-1)Ag(n=4,5)团簇吸附后的TiO_2(110)表面不再具有半导体性质.Au Ag和Au_2Ag团簇与TiO_2表面的作用较弱,它们与TiO_2表面之间的电荷转移较少.  相似文献   

11.
甲酸分解制氢是解决能源问题的有效途径,与Pd催化剂相比,Au催化剂不易失活,具有较好的稳定性.使用次亚磷酸钠原位还原制备了Au-P/SiO_2催化剂,并利用X射线衍射、透射电子显微镜和X射线光电子能谱等表征手段探讨其结构,并以甲酸分解为目标反应研究其催化性能.结果表明,该方法制备的催化剂中Au粒子(粒径3nm左右)均匀分散在SiO_2表面,且P掺杂进入Au的晶格形成Au-P复合物,改变了Au的电子结构.同时反应过程中产生的PⅢ被Au3+氧化生成磷酸金,提供酸性中心,使Au-P/SiO_2催化剂表现出较Au/SiO_2催化剂更加优越的催化性能.在363K,4mol/L的甲酸溶液中,Au-P/SiO_2催化剂催化甲酸分解的转化率可达51%,是未掺杂的Au/SiO_2催化剂的4倍.  相似文献   

12.
采用自组装方式制备GNPs/L-Cys/Au和Au_(25)/L-Cys/Au修饰电极,构造不同的CO_2电化学还原界面.利用线性扫描伏安法和红外光谱电化学技术研究修饰电极上CO_2电化学行为.电化学结果表明:与Au电极相比,在GNPs/L-Cys/Au电极上,CO_2还原过电位降低了将近190 mV;而在Au_(25)/L-Cys/Au电极上,过电位降低了将近280mV,Au_(25)/L-Cys/Au电极表现出更好的CO_2电化学催化效果.结合红外光谱电化学结果提出了CO_2在Au_(25)/L-Cys/Au电极上可能的还原机制.  相似文献   

13.
Fe/Au核壳复合纳米粒子的制备及表征   总被引:3,自引:0,他引:3  
在十六烷基三甲基溴化铵(CTAB)、正丁醇、正辛烷和水组成的反胶束体系中,用NaBH4作为还原剂前后连续还原硫酸亚铁和氯金酸,在反胶束体系内先生成Fe核,HAuCl4水溶液的加入增大了反胶束的尺寸,由于过量的NaBH4的存在,Au在Fe外层被还啄,生成Fe/Au核壳复合纳米粒子,采用光子相关谱(PCS)、透射电镜(TEM)、俄歇电子能谱(AES)、扫描电镜能谱分析(SEM-EDS)等表征,结果表明得到的Fe/Au核壳复合纳米粒子粒径约为27nm,Au和Fe的质量比大致为3:1,Au作为壳层包覆在Fe纳米粒子外面.  相似文献   

14.
利用化学还原法合成了4种不同Pt/Ru原子比例的合金型PtRu/C、核壳型Ru@Pt/C及Pt/C直径相近的纳米金属催化剂。结果表明:Ru@Pt/C、PtRu/C催化剂纳米金属粒子的直径平均约为9~11nm,Ru@Pt/C呈核壳型结构;Ru@Pt/C电催化氧化甲醇机理较为符合电子效应机理,PtRu/C电催化氧化甲醇机理较为符合电子效应与双功能机理共同作用机理,催化机理的明确为新型催化剂的研发和改性提供了坚实的理论依据。  相似文献   

15.
郎德龙 《广西科学》2022,29(6):1212-1216
为寻求一种较好的Pt-Co/C纳米合金催化剂合成方法,运用浸渍还原法制备两种Pt-Co/C催化剂,运用循环伏安和线性扫描的方法测试它们在H2SO4溶液中有无CH3OH时,对O2的电催化还原情况及抗甲醇性能,同时与商用Pt/C催化剂进行还原性能比较。结果表明:与商用Pt/C催化剂电极相比,Pt-Co/C (1)催化剂电极对O2的电催化还原效果较好。80℃时制备的Pt∶Co=3∶1的Pt-Co/C催化剂电极对O2的电催化还原效果最佳。扫描电子显微镜(Scanning Electron Microscope, SEM)和透射电子显微镜(Transmission Electron Microscope, TEM)观察表明,Pt-Co/C (1)催化剂粒径小且分散均匀。采用浸渍还原法,以硼氢化钠为还原剂制得的Pt-Co/C (1)催化剂对O2的电催化还原性能较好,同时具有较好的抗甲醇氧化能力。  相似文献   

16.
利用分子动力学模拟(MD)方法对受限于扶手椅型单壁碳纳米管中的(Pd_(0.33)Au_(0.33)Pt_(0.33))_(1522)三元金属纳米粒子在加热和冷却过程的相变机理进行了研究.总能量、结构和径向密度分布用于分析(Pd_(0.33)Au_(0.33)Pt_(0.33))_(1522)纳米粒子在加热和冷却过程中的结构特征.结果表明,受限在碳纳米管中的(Pd_(0.33)Au_(0.33)Pt_(0.33))_(1522)具有多层圆筒状结构,不同于游离的纳米粒子的结构.受限的(Pd_(0.33)Au_(0.33)Pt_(0.33))_(1522)三元金属纳米粒子的密度分布揭示了熔化起始于内层,结晶起始于金属与碳管的界面.本文揭示了受限Pd-Au-Pt纳米粒子熔化转变的结构特征.  相似文献   

17.
通过一步还原法制备了还原氧化石墨烯纳米片负载的铜纳米粒子复合材料(CuNPs-rGO-20%,CuNPs-rGO-80%,CuNPs-rGO-120%),并利用循环伏安法分别在0.1 mol/L KOH水溶液和离子液体(Ionic Liquid,IL)1-丁基-3-甲基咪唑四氟硼酸盐([Bmim] BF_4)电解液中进行电化学测试来研究其对氧还原反应(Oxygen Reduction Reaction,ORR)的电催化效果.采用透射电镜(TEM)和X射线衍射仪(XRD)对所制备的纳米粒子催化剂进行表征.TEM和XRD结果表明,所制备的CuNPs-rGO-80%纳米粒子表面主要为Cu(111)晶面,平均粒径约为10 nm.电化学测试结果表明,与商业化Pt/C(质量浓度20%)催化剂相比,CuNPs-rGO-80%纳米催化剂在IL中具有优异的ORR电催化活性,ORR的起始电位更正,ORR峰电位正移150 mV,还原电流密度更大.  相似文献   

18.
对Na Y分子筛进行Ce4+交换改性,获得Ce Na Y载体,继而负载Au制备一系列Au/Ce Na Y催化剂。采用电感耦合等离子光谱分析仪(ICP-OES)、N2物理吸附仪、X线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和H2程序升温还原(H2-TPR)等方法对负载纳米Au催化剂进行表征,并考察催化剂的水汽变换反应活性。结果表明:随着载体中Ce4+含量增加,催化剂的Au负载量逐渐提高,比表面积和孔容显著下降,且纳米Au颗粒均匀地分散于分子筛载体上。Au/Ce Na Y比Au/Na Y具有更高的水汽变换反应活性,且Au/Ce Na Y催化剂的反应活性随载体中的Ce4+含量的增加而提高。在350℃时,Au/Na Y的反应活性为2.6 mol/(mol·h),而Au/Ce Na Y的反应活性高达33.2 mol/(mol·h)。  相似文献   

19.
为了提高锌空气电池 (ZABs) 中阴极氧气还原反应 (ORR) 的效率,本文提出了一种吸附–络合–煅烧方法,在石墨烯纳米片上形成包含 Co、Co3O4 和 CoN 的多组分钴基纳米粒子及大量N掺杂原子,获得 Co/Co3O4/CoN/NG复合材料。尺寸小于50 nm的Co/Co3O4/CoN 纳米粒子均匀分散在 N 掺杂石墨烯 (NG) 基底上,极大地改善了ORR的电催化行为。测试结果表明,所制备材料催化ORR的半波电位高达0.80 V vs. RHE,极限电流密度为4.60 mA?cm?2,与市售的铂/碳 (Pt/C) 催化剂接近。作为ZABs的阴极催化剂,该电池的比容量和开路电压分别为 843.0 mAh?g?1和1.41 V。优异的性能归因于高度分散的Co/Co3O4/CoN纳米颗粒和掺杂氮原子提供了大量的催化活性位点,以及石墨烯二维结构提供了高表面积及快速的电子传输通道。  相似文献   

20.
将炭黑(CB)纳米粒子与类石墨相氮化碳(g-C3N4)混合,然后将金纳米粒子(Au NPs)掺杂其中,形成一种新型g-C3N4/CB/AuNPs复合纳米材料,用于修饰玻碳电极.通过扫描电子显微镜(SEM)对复合材料的形貌进行了表征.实验结果表明:g-C3N4/CB/AuNPs对硫酸联氨(N2H4·H2SO4)的电化学氧化呈现极好的电催化性能.硫酸联氨的氧化电流与其物质的量浓度在2.5×10-5~1.5×10-3 mol·L-1线性范围内呈良好的线性关系,检测限为1.6μmol·L-1(信噪比S/N=3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号