首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We examined experimentally the flapping performance in terms of aerodynamic force generation of an insect-inspired flapper actuated by both of original LIPCA and compressed LIPCA. Flapping tests for two artificial wing shapes of horse botfly and hawk moth were conducted at the wing rotation angle of 60° and a flapping frequency range from 6 Hz to 12 Hz to find the optimum flapping frequency and to investigate the effect of compressed LIPCA and wing shape on the force generation. Flapping tests in the vacuum were also undertaken to measure the induced inertia force. The aerodynamic force was calculated by subtracting the inertia force from the total force measured in the air. It was found that the average inertia force was relatively small when compared with the average total force. The use of the compressed LIPCA could significantly improve the flapping angle of the flapper from 110° to 130° (18.2% increase) resulting in 24.5% increase in the average aerodynamic force. It was also found that flapper with hawk moth wings could produce larger force than the flapper with horse botfly wings.  相似文献   

2.
为延长飞行汽车的飞行时间及实现飞行汽车可以在空中飞行模式与陆地行驶模式下正常工作,在根据升力公式对飞行汽车机翼进行设计选型后,对机翼折叠、回收机构进行设计并基于复数矢量法建立机翼折叠、回收机构运动学模型,使用MATLAB分析计算了机构关键杆件的角位移、角速度、角加速度变化情况,并用Adams对机构进行运动仿真分析。分析结果表明:机翼折叠机构与回收机构的角位移、角速度、角加速度图像均未出现激增或骤降,机构结构设计合理,可实现平滑稳定运动,运动特性良好。其中,通过控制折叠机构驱动杆件由83.25°偏转至116.75°实现折叠外翼90°的偏转。通过控制回收机构驱动滑块位移516.6 mm实现机翼90°的展开。最终在30 s内完成机翼折叠及回收作业。  相似文献   

3.
管式发射巡飞弹的气动特点及设计   总被引:1,自引:1,他引:0  
讨论了管式发射巡飞弹的气动特点和设计,分析了折叠翼的低雷诺数高升力翼型的气动特性、设计方法以及弹翼的折叠设计,并分析了柔性充气翼的发展、优缺点、气动特性以及目前存在的技术难题.研究结果表明,封装后的充气翼不会破坏机翼结构的整体性,体积降为展开体积的1/10,避开了传统飞行器复杂的折叠结构,质量也大为减轻.分析结果表明充气翼的发展优势以及巡飞弹气动一体化总体设计技术的重要性.  相似文献   

4.
运用几何形态测量学技术对蜻蜓前后翅进行量化分析,并结合主成分分析法和聚类分析法探讨浙江临海地区常见的4种蜻蜓前后翅的翅型和翅脉变异规律,进而揭示其形态相似形关系.结果表明,异色多纹蜻和红蜻翅的形态相似度最高,而黄蜻与其他几种蜻蜓的差异最大;差异的部位主要在翅痣、翅结区域、径脉域、径脉与中脉之间、肘脉域以及靠近翅基部的臀脉域等区域;异色多纹蜻和红蜻的关系最近,而黄蜻与其他几种蜻蜓的亲缘关系最远.几何测量学可用于蜻蜓种类的划分.  相似文献   

5.
针对前掠翼静气动弹性发散问题,基于等离子体流动控制与流固双向静力耦合技术,通过求解三维定常可压N-S方程与结构静力平衡方程,在亚声速条件下施加等离子体激励和不施加激励时对其进行对比仿真研究。前掠翼选用NACA0015翼型,等离子体流动控制采用唯象学模型,施加在机翼上表面前缘。研究结果表明:在前掠翼外侧上表面前缘施加等离子体激励后,激励区附近局部来流经激励受到电场力做功,总能量增加,动能与压力势能分别有不同程度的增大,外在表现为上表面局部流速加快,压力增大,升力有一定损失,下表面压力基本不变,在机翼前缘外侧靠近翼尖处产生低头力矩,可控制前掠翼弹性变形,有效抑制其气弹发散,且随着激励强度的增加,抑制作用逐渐增强。研究结果可为变前掠翼飞行器的气动弹性设计和机翼的流动控制等提供参考。  相似文献   

6.
The surface shape, structure, biomaterial and wettability of moth wings (10 NOCTUIDAE species) from the northeast region of China were qualitatively and quantitatively studied by means of a stereoscopic microscope, a scanning electronic microscope, fourier transform infrared spectroscopy(FT-IR) and the interface contact angle measurement. The observation shows that there are scales arranged like overlapping tiles on the surface of the moth wings. The shapes of the scales are different between species. They overlap horizontally and there is particular space vertically in the direction of the wing veins. The surface of the scale is structured by micron-class grooves and nanometer-class vertical gibbosities. The biomaterial components of the moth wing scale are mostly made up of protein, lipids and chitin. The observation also shows that the contact angle for wings with scales is in the range from 144.8° to 152.9°, while that for those without scales is from 90.0° to 115.9°. It indicates that the surfaces of the wings with scales are more hydrophobic. According as Cassie model, the equation of wettability on the NOCTUIDAE moth wing surface is established and the hydrophobic mechanism is analyzed. It is concluded that the hydrophobicity of the moth wings is induced by the multivariate coupling of the shape, structures and biomaterial of the scales. Supported by the Key Research Project under the National Natural Science Foundation (Grant No. 50635030), Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20040183048) and Graduate Student Innovation Foundation of JiLin University (985 Project) (Grant No. 20080210)  相似文献   

7.
As a member of robot families, climbing robots have become one of the research hot-spots in the robotic field recently and Gekko gecko (G. gecko) has been broadly seen as an ideal model for climbing robot development. But for gecko-mimic robots, one of the key problems is how to design the robot's foot. In this paper, (1) high-speed camera recording and electrophysiological method are used to observe motion patterns of G. gecko's foot when it climbs on different oriented surfaces; (2) nerve innervations of gecko's toes to motion and reception are studied. It is found that the five toes of the G. gecko can be divided into two motion and reception divisions, and also its motion and reception are modulated and controlled hierarchically. The results provide important information and exclusive ideas for the foot design and control algorithm of gecko-mimic robots.  相似文献   

8.
How swifts control their glide performance with morphing wings   总被引:4,自引:0,他引:4  
Gliding birds continually change the shape and size of their wings, presumably to exploit the profound effect of wing morphology on aerodynamic performance. That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models, which extrapolated the wing's performance envelope from aerodynamic theory. Here we describe the aerodynamic and structural performance of actual swift wings, as measured in a wind tunnel, and on this basis build a semi-empirical glide model. By measuring inside and outside swifts' behavioural envelope, we show that choosing the most suitable sweep can halve sink speed or triple turning rate. Extended wings are superior for slow glides and turns; swept wings are superior for fast glides and turns. This superiority is due to better aerodynamic performance-with the exception of fast turns. Swept wings are less effective at generating lift while turning at high speeds, but can bear the extreme loads. Finally, our glide model predicts that cost-effective gliding occurs at speeds of 8-10 m s(-1), whereas agility-related figures of merit peak at 15-25 m s(-1). In fact, swifts spend the night ('roost') in flight at 8-10 m s(-1) (ref. 11), thus our model can explain this choice for a resting behaviour. Morphing not only adjusts birds' wing performance to the task at hand, but could also control the flight of future aircraft.  相似文献   

9.
The butterfly Thaumantis diores is a species in the Northeast of China. There are two kinds of scales on its wings, which overlap like roof tiles and completely cover the membrane. The SEM results showed that only Type-I scales play a key role in forming the blue structural color. Type-II scales have black chemical color. The cross section micro-configuration of scales is achieved by using the transmission electron microscopy (TEM). The brilliant blue generated through the multilayer microstructure is explained by the photonic crystal reason. The multilayer microstructure of the ridges is optimized to 1D Bragg stack for simulation. The reflectivity of the wing is measured by a spectrometer, and the experimental graph accord with the simulation curves basically. When this species fly, the wing’s color and brightness can change because of the transform between structural color and chemical color. The bionic color-changing design and the significance of this effect in video stealth or other fields are discussed at the end of the paper. Supported by Fok Ying Tong Education Foundation (Grant No. 101020), the Natural Science Foundation of China (Grant No. 30570235, 50635030), National Basic Research of China (Grant No. 2007CB616913) and Key Project of the Ministry of Education (Grant No. 105059)  相似文献   

10.
The vector-valued Dirichlet-type spaces on the unit ball of C n is introduced. We discuss the pointwise multipliers of Dirichlet-type spaces. Sufficient conditions of the pointwise multipliers of are given. Finally, Rademacherp-type space is characterized by vector-valued sequence spaces. Foundation item: Supported by the National Natural Science Foundation of China (10371093) Biography: LI Ying-kui (1975-), male, Ph. D candidate, research direction: Banach space geometry and martingale theory.  相似文献   

11.
Low-pressure premixed laminar n-heptane+propane/oxygen/nitrogen flames were investigated with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam sampling mass spectrometry. Three flames with different mass percentage of propane in the fuel blends of 0%, 10%, and 20% were studied. The combustion intermediates were identified by comparing the measured IEs with those values in literatures. Mole fraction profiles of the main species were compared among the three flames. The experimental results provide detailed data in understanding the combustion of n-heptane and n-heptane/propane blends in engine. They are also helpful in establishing and verifying the kinetic models. Supported by the National Natural Science Foundation of China (Grant Nos. 50636040 and 50521604)  相似文献   

12.
提出一种大展弦比弹翼张开机构的设计方案,该方案选择弹簧、压缩气体或燃气为动力源,采用连杆机构传递驱动力,符合约束条件与设计规范;在此基础上建立弹翼张开机构的运动分析模型,包括弹翼张开机构的运动关系、受力分析和动力学方程。对几种典型状态进行对比计算、验证分析模型,获得一些规律性认识。其结果对于机载布撒器一类武器的总体设计与工程分析具有实用价值。  相似文献   

13.
裁翅对果蝇(Drosophila melanogaster)生殖行为的影响   总被引:1,自引:0,他引:1  
选用野生型、残翅和白眼3种不同基因型的果蝇,人为地将野生型和白眼果蝇的翅膀分别剪去0/3,1/3,1/2,2/3,1/1,设计39种不同的杂交组合,培养在相同大小的容器中,置于室温条件下。统计各种组合的子代果蝇发生量。结果显示:果蝇的生殖过程中,不同性状的个体之间存在一定的生殖“歧视”。同时进入繁殖期时。翅是两性吸引的重要的结构部分,雄性主要依靠振翅的频率来吸引异性,因此果蝇的翅是繁殖交尾的一种关键辅助结构。  相似文献   

14.
Sadqi M  Fushman D  Muñoz V 《Nature》2006,442(7100):317-321
Protein folding is an inherently complex process involving coordination of the intricate networks of weak interactions that stabilize native three-dimensional structures. In the conventional paradigm, simple protein structures are assumed to fold in an all-or-none process that is inaccessible to experiment. Existing experimental methods therefore probe folding mechanisms indirectly. A widely used approach interprets changes in protein stability and/or folding kinetics, induced by engineered mutations, in terms of the structure of the native protein. In addition to limitations in connecting energetics with structure, mutational methods have significant experimental uncertainties and are unable to map complex networks of interactions. In contrast, analytical theory predicts small barriers to folding and the possibility of downhill folding. These theoretical predictions have been confirmed experimentally in recent years, including the observation of global downhill folding. However, a key remaining question is whether downhill folding can indeed lead to the high-resolution analysis of protein folding processes. Here we show, with the use of nuclear magnetic resonance (NMR), that the downhill protein BBL from Escherichia coli unfolds atom by atom starting from a defined three-dimensional structure. Thermal unfolding data on 158 backbone and side-chain protons out of a total of 204 provide a detailed view of the structural events during folding. This view confirms the statistical nature of folding, and exposes the interplay between hydrogen bonding, hydrophobic forces, backbone conformation and side-chain entropy. From the data we also obtain a map of the interaction network in this protein, which reveals the source of folding cooperativity. Our approach can be extended to other proteins with marginal barriers (less than 3RT), providing a new tool for the study of protein folding.  相似文献   

15.
With the aid of Plancherel-Godement Theorem, we prove that every positive distributionT onSO (3, 1) which is bi-invariant underSO(3) corresponds to a measure μ on ω=∝σC|s(2-s)>=0∝, and μ can be decomposed intoμ=μ 1+μ 2, whereμ 1 is a bounded measure on 0<=s<=2 andμ 2 is slowly increasing measure on (sχC|Re(s)=1)} Foundation item: Supported by the National Natural Science Foundation of China (19871065) and Hua Cheng Mathematics Science Foundation. Biography: Zhu Li (1976-), male, Graduate student, research interest: partial differential equation  相似文献   

16.
In this paper we investigated theL 1 norm inequalities of theP square and the maximal functions of two-parameterB-valued strong martingales, which can be applied to characterizep-smoothness andq-convexity of Banach spaces. Foundation item: Supported by the National Natural Science Foundation of China Biography: YE Chen (1974-), male, Master candidate, Research interest is in stochastic processes.  相似文献   

17.
Serum resistance-associated (SRA) protein, a protein unique for Trypanosoma brucei rhodesiense, is responsible for resistance of this parasite to the lysis by normal human serum (NHS) and is a vital molecular marker to distinguish this species from other African trypanosomes. We cloned and sequenced the SRA basic copy (SRAbc) gene from T. b. rhodesiense and related species and found that this gene is confined to the subgenus Trypanozoon. The average 82% identity among the sequenced SRAbc genes indicates that they may have a common origin and are highly conserved. Since SRAbc coexists in the T. b. rhodesiense genome with SRA, we propose that SRAbc might be the ‘donor VSG’, which after duplication became inserted into the expression site by recombination. Under natural selection, SRAbc could reform into SRA following mosaic formation. Supported by National Natural Science Foundation of China (Grant Nos. 30570245, 30670275), Changjiang Scholars and Innovative Research Team in University (Grant No. DPCKSCU/IRT0447), International Foundation for Science of Sweden (Grant No. B/4318-1), Grant Agency of the Czech Republic (Grant No. Z60220518) and Education Foundation of the Czech Republic (Grant No. 2B06129)  相似文献   

18.
Many biological functions of RNA molecules are related to their pseudoknot structures. It is significant for predicting the structure and function of RNA that learning about the stability and the process of RNA pseudoknot folding and unfolding. The structural features of mouse mammary tumor virus (MMTV) RNA pseudoknot in different ion concentration, the unfolding process of the RNA pseudoknot, and the two hairpin helices that constitute the RNA pseudoknot were studied with all atom molecule dynamics simulation method in this paper. We found that the higher cation concentration can cause structure of the RNA molecules more stable, and ions played an indispensable role in keeping the structure of RNA molecules stable; the unfolding process of hairpin structure was corresponding to the antiprocess of its folding process. The main pathway of pseudoknot unfolding was that the inner base pair opened first, and then, the two helices, which formed the RNA pseudoknot opened decussately, while the folding pathway of the RNA pseudoknot was a helix folding after formation of the other helix. Therefore, the unfolding process of RNA pseudoknot is different from the antiprocess of its folding process, and the unfolding process of each helix in the RNA pseudoknot is similar to the hairpin structure’s unfolding process, which means that both are the unzipping process.  相似文献   

19.
为进一步揭示蜻蜓翼在被动的柔性变形和串列双翼柔性干涉作用下对气流的影响机制,本文基于STAR-CCM+软件,采用流固耦合方法对Navier-Stokes方程进行数值求解。研究了杨氏模量为3 800 MPa、泊松比为0.25时,蜻蜓柔性复翼的变形及其气动特性响应规律。研究表明:蜻蜓翼保持正向高置差气动布局均会带来相似且有益的影响。迎角5°时,1.2 mm的高置布局相比低置气动布局的升力系数提升了5.2%,当迎角增大到25°时,差值达到19%。双翼干涉效应下,前翼的气动特性会得到明显的提升,后翼虽会损失一定的气动力,但总体而言,动态干涉是有益的。从双翼气流分离下诱导的后缘涡强度来看,后翼的涡要明显强于前翼。9 m/s以后,蜻蜓滑翔时由前翼承担主要载荷的方式缓慢过渡到后翼,而且后翼翼梢处受载较明显,其最大变形达到16 mm;扭转变形方面:速度一定时,随着滑翔时失速迎角增大,后翼的动态弯扭变形明显强于前翼,验证了蜻蜓翼大迎角下利用后翼机动滑翔的观点。  相似文献   

20.
During the evolution of proteins the pressure to optimize biological activity is moderated by a need for efficient folding. For most proteins, this is accomplished through spontaneous folding to a thermodynamically stable and active native state. However, in the extracellular bacterial alpha-lytic protease (alphaLP) these two processes have become decoupled. The native state of alphaLP is thermodynamically unstable, and when denatured, requires millennia (t1/2 approximately 1,800 years) to refold. Folding is made possible by an attached folding catalyst, the pro-region, which is degraded on completion of folding, leaving alphaLP trapped in its native state by a large kinetic unfolding barrier (t1/2 approximately 1.2 years). alphaLP faces two very different folding landscapes: one in the presence of the pro-region controlling folding, and one in its absence restricting unfolding. Here we demonstrate that this separation of folding and unfolding pathways has removed constraints placed on the folding of thermodynamically stable proteins, and allowed the evolution of a native state having markedly reduced dynamic fluctuations. This, in turn, has led to a significant extension of the functional lifetime of alphaLP by the optimal suppression of proteolytic sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号