首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Retinoic acid (RA, 10–5–10–7 M) is shown to enhance the proliferation of cultured rat aortic smooth muscle cells (SMC). This effect is not connected with a synergistic action of RA together with serum mitogens. Moreover, the expression of L1, a surface antigen specific for modulated SMC entering the cell cycle, is amplified by RA treatment.  相似文献   

2.
Colchicine treatment resulted in the appearance and proliferation of smooth sarcoplasmic reticulum in some smooth muscle cells of the aortic and pulmonary trunk walls in the rabbit. The significance of cytoplasmic microtubules and/or membrane-bound tubulin for the morphogenesis, functioning and control of smooth endoplasmic reticulum in different kinds of cells is discussed.  相似文献   

3.
Summary Colchicine treatment resulted in the appearance and proliferation of smooth sarcoplasmic reticulum in some smooth muscle cells of the aortic and pulmonary trunk walls in the rabbit. The significance of cytoplasmic microtubules and/or membrane-bound tubulin for the morphogenesis, functioning and control of smooth endoplasmic reticulum in different kinds of cells is discussed.  相似文献   

4.
Muscle satellite cells are resistant to cytotoxic agents, and they express several genes that confer resistance to stress, thus allowing efficient dystrophic muscle regeneration after transplantation. However, once they are activated, this capacity to resist to aggressive agents is diminished resulting in massive death of transplanted cells. Although cell immaturity represents a survival advantage, the signalling pathways involved in the control of the immature state remain to be explored. Here, we show that incubation of human myoblasts with retinoic acid impairs skeletal muscle differentiation through activation of the retinoic-acid receptor family of nuclear receptor. Conversely, pharmacologic or genetic inactivation of endogenous retinoic-acid receptors improved myoblast differentiation. Retinoic acid inhibits the expression of early and late muscle differentiation markers and enhances the expression of myogenic specification genes, such as PAX7 and PAX3. These results suggest that the retinoic-acid-signalling pathway might maintain myoblasts in an undifferentiated/immature stage. To determine the relevance of these observations, we characterised the retinoic-acid-signalling pathways in freshly isolated satellite cells in mice and in siMYOD immature human myoblasts. Our analysis reveals that the immature state of muscle progenitors is correlated with high expression of several genes of the retinoic-acid-signalling pathway both in mice and in human. Taken together, our data provide evidences for an important role of the retinoic-acid-signalling pathway in the regulation of the immature state of muscle progenitors.  相似文献   

5.
Human and rat primary sub-cultured vascular smooth muscle cells (VSMCs) showed clear expression of the death receptors TRAIL-R1 and TRAIL-R2; however, recombinant soluble TRAIL did not induce cell death when added to these cells. TRAIL tended to protect rat VSMCs from apoptosis induced either by inflammatory cytokines tumor necrosis factor- + interleukin-1 + interferon- or by prolonged serum withdrawal, and promoted a significant increase in VSMC proliferation and migration. Of note, all the biological effects induced by TRAIL were significantly inhibited by pharmacological inhibitors of the ERK pathway. Western blot analysis consistently showed that TRAIL induced a significant activation of ERK1/2, and a much weaker phosphorylation of Akt, while it did not affect the p38/MAPK pathway. Taken together, these data strengthen the notion that the TRAIL/TRAIL-R system likely plays a role in the biology of the vascular system by affecting the survival, migration and proliferation of VSMCs.Received 6 May 2004; received after revision 7 June 2004; accepted 8 June 2004  相似文献   

6.
7.
Zusammenfassung Das Auftreten von Cilien der glatten Muskelzellen des Rattenuterus wird beschrieben. Auf Grund der Häufigkeit dieser Cilien im Vergleich zu den Zentralkörperchen wird angenommen, dass jede glatte Muskelzelle wenigstens eine Cilie besitzt, die eine Sinnesfunktion erfüllen könnte.  相似文献   

8.
Summary The maximal unloaded shortening velocity (Vmax) of smooth muscle cells isolated from the pedal retractor muscle ofMytilus was more than twice as large as that of the whole muscle, suggesting the presence of extracellular components which resist the contraction of the whole muscle. The Vmax of the isolated cells was almost constant at cell lengths ranging between 0.5 and 0.8310 (10, optimal length for tension generation) indicating that the intracellular resistance to contraction is negligible within this range of lengths.  相似文献   

9.
Summary The effects of serotonin on the formation of inositol phosphates and protein phosphorylation were examined in cultured smooth muscle cells. Serotonin stimulated the formation of [3H]inositol monophosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. This effect was prevented by 5-HT2 specific antagonist, 6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid, 2-hydroxy-1-methylpropyl ester [Z]-2-butenedioate (LY53857). Serotonin stimulated the phosphorylation of many polypeptides, among which a 20 kDa polypeptide was the most prominent. The phosphorylation was also inhibited by LY53857. LY53857 alone produced no effects on protein phosphorylation. The 20 kDa polypeptides were also phosphorylated by the addition of 12-O-tetradecanoylphorbol-13-acetate. These results suggest that serotonin stimulates protein phosphorylation through 5-HT2 receptors and possibly activates protein kinase C in intact vascular smooth muscle cells.Part of the data contained in this paper was presented at the 74th local meeting of the Japanese Society of Pharmacology at Kanagawa.  相似文献   

10.
Ciliation in endometrial fibroblasts and myometrial muscle cells of the rat was examined by transmission electron microscopy. Quantification of the number of ciliated cells during the estrus cycle did not show any firm relationship between ciliation and ovarian hormonal activity. In the case of most cilia, there is a spatial relationship between their basal centrioles and the Golgi complex, so that a Golgi-cilium complex is created. A possible role of ciliation in uterine fibroblasts and smooth muscle cells is discussed.  相似文献   

11.
Summary Ciliation in endometrial fibroblasts and myometrial muscle cells of the rat was examined by transmission electron microscopy. Quantification of the number of ciliated cells during the estrus cycle did not show any firm relationship between cilation and ovarian hormonal activity. In the case of most cilia, there is a spatial relationship between their basal centrioles and the Golgi complex, so that a Golgi-cilium complex is created. A possible role of ciliation in uterine fibroblasts and smooth muscle cells is discussed.  相似文献   

12.
T Nakaki  B C Wise  D M Chuang  R Kato 《Experientia》1989,45(9):879-881
The effects of serotonin on the formation of inositol phosphates and protein phosphorylation were examined in cultured smooth muscle cells. Serotonin stimulated the formation of [3H]inositol monophosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. This effect was prevented by 5-HT2 specific antagonist, 6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid, 2-hydroxy-1-methylpropyl ester [Z]-2-butenedioate (LY53857). Serotonin stimulated the phosphorylation of many polypeptides, among which a 20 kDa polypeptide was the most prominent. The phosphorylation was also inhibited by LY53857. LY53857 alone produced no effects on protein phosphorylation. The 20 kDa polypeptides were also phosphorylated by the addition of 12-O-tetradecanoylphorbol-13-acetate. These results suggest that serotonin stimulates protein phosphorylation through 5-HT2 receptors and possibly activates protein kinase C in intact vascular smooth muscle cells.  相似文献   

13.
Gap junctional communication permits the direct exchange of small molecules and ions and has been implicated in tissue homeostasis/metabolite exchange. The lack of gap junctional intercellular communication (GJIC) plays important roles in the promotion and progression of carcinogenesis. In the present study, we demonstrate that treatment of human hepatoma Hep G2 cells with retinoic acid (RA) results in increased amounts and phosphorylation of connexins, their stabilisation in plasma membrane plaques and enhanced GJIC. In cultured fetal hepatocytes, which represent a non-transformed, proliferating and incompletely differentiated liver system, the effects of RA are limited to the establishment of connexin in areas of cell-cell contact and the improvement of GJIC. This suggests that modulation of cell-cell channel communication by RA occurs differently in these two experimental models: while RA is able to revert cell transformation in Hep G2 cells, in fetal hepatocytes it may induce the expression of a more differentiated phenotype. Received 19 June 2002; received after revision 29 July 2002; accepted 8 August 2002 RID="*" ID="*"Corresponding author.  相似文献   

14.
15.
16.
Zusammenfassung Mit Hilfe der Gefrierätzung wurde die Oberfläche glatter Muskelzellen von Kaninchenarterien (A. ilica) dargestellt. Die Aufsicht zeigt ein charakteristisches Muster von parallel zur Zellachse verlaufenden Streifen, welche aus einer bis mehreren Reihen einheitlich grosser Membraneinstülpungen (Caveolae intracellulares) bestehen.

The authors wish to thank Prof.H. Moor, Department of General Botany, Swiss Federal Institute of Technology, Zürich (Switzerland), for advice and freeze-etching facilities.  相似文献   

17.
Cellular and Molecular Life Sciences - Portal hypertension was induced in rats by partial ligation of the hepatic branches of the portal vein. After 5 days the vein was removed and mounted in...  相似文献   

18.
Riassunto Il trattamento con vitamina E di conigli ovariectomizzati determina una ipertrofia dell'utero alla quale corrisponde a livello ultracellulare uno sviluppo particolarmente evidente delle proteine contrattili muscolari.  相似文献   

19.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid which regulates multiple biological parameters in a number of cell types, including stem cells. Here we report, for the first time, that S1P dose-dependently stimulates differentiation of adipose tissue-derived mesenchymal stem cells (ASMC) towards smooth muscle cells. Indeed, S1P not only induced the expression of smooth muscle cell-specific proteins such as α-smooth muscle actin (αSMA) and transgelin, but also profoundly affected ASMC morphology by enhancing cytoskeletal F-actin assembly, which incorporated αSMA. More importantly, S1P challenge was responsible for the functional appearance of Ca2+ currents, characteristic of differentiated excitable cells such as smooth muscle cells. By employing various agonists and antagonists to inhibit S1P receptor subtypes, S1P2 turned out to be critical for the pro-differentiating effect of S1P, while S1P3 appeared to play a secondary role. This study individuates an important role of S1P in AMSC which can be exploited to favour vascular regeneration. Received 06 March 2009; accepted 17 March 2009  相似文献   

20.
Diltiazem, a calcium antagonist, significantly reduced the increased 45Ca uptake and the number of dead cells in cultured aortic smooth muscle cells induced by hyperlipidemic serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号