首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sketch the development from matrix mechanics as formulated in the Dreimännerarbeit of Born, Heisenberg, and Jordan, completed in late 1925, to transformation theory developed independently by Jordan and Dirac in late 1926. Focusing on Jordan, we distinguish three strands in this development: the implementation of canonical transformations in matrix mechanics (the main focus of our paper), the clarification of the relation between the different forms of the new quantum theory (matrix mechanics, wave mechanics, q-numbers, and operator calculus), and the generalization of Born's probability interpretation of the Schrödinger wave function. These three strands come together in a two-part paper by Jordan published in 1927, “On a new foundation [neue Begründung] of quantum mechanics.”  相似文献   

2.
B. R. Frieden uses a single procedure, called extreme physical information, with the aim of deriving ‘most known physics, from statistical mechanics and thermodynamics to quantum mechanics, the Einstein field equations and quantum gravity’. His method, which is based on Fisher information, is given a detailed exposition in this book, and we attempt to assess the extent to which he succeeds in his task.  相似文献   

3.
The bewildering complexity of the history of quantum theory tends to discourage its use as a means to understand or teach the foundations of quantum mechanics. The present paper is an attempt at simplifying this history so as to make it more helpful to physicists and philosophers. In particular, Heisenberg's notoriously difficult derivation of the fundamental equations of quantum mechanics, or later derivations of its statistical interpretation are replaced with shorter and more direct arguments to the same purpose. As the implied amputations and distortions do not imply major anachronisms, they should facilitate the grasping of the main historical steps without excluding a reasonable assessment of their historical or logical necessity.  相似文献   

4.
Hilbert's axiomatization program of physical theories met an interesting challenge when it confronted the rise of quantum mechanics in the mid-twenties. The novelty of the mathematical apparatus of the then newly born theory was to be matched only by its substantial lack of any definite physical interpretation. The early attempts at axiomatization, which are described here, reflect all the difficulty of the task faced by Jordan, Hilbert, von Neumann and others. The role of von Neumann is examined in considerable detail as he can be viewed here as the most outstanding of Hilbert's heirs. Von Neumann, especially in his work devoted to the proof of the impossibility of hidden variables, not only continued Hilbert's program but pushed it to its very limits, blending axiomatic rigor and interpretative commitment. (Received September 9, 1999)  相似文献   

5.
Typical worlds     
Hugh Everett III presented pure wave mechanics, sometimes referred to as the many-worlds interpretation, as a solution to the quantum measurement problem. While pure wave mechanics is an objectively deterministic physical theory with no probabilities, Everett sought to show how the theory might be understood as making the standard quantum statistical predictions as appearances to observers who were themselves described by the theory. We will consider his argument and how it depends on a particular notion of branch typicality. We will also consider responses to Everett and the relationship between typicality and probability. The suggestion will be that pure wave mechanics requires a number of significant auxiliary assumptions in order to make anything like the standard quantum predictions.  相似文献   

6.
The life of Ludwig Boltzmann (20 February 1844–5 September 1906) and his influence on science is reviewed. This great Austrian scientist was not only the founder of statistical mechanics and a gifted experimentalist, but his pioneering ideas influenced all the physical sciences. In his honour, many Austrian research institutes carry his name. He had great influence on Albert Einstein whose first papers were, according to his own words, in the spirit of Boltzmann, and intended to proved the reality and the size of certain atoms using the molecular fluctuations postulated by Boltzmann. Max Planck was converted from a ‘Saulus’ to a ‘Paulus’ when he had to use Boltzmann's method to derive his famous law of radiation. In fact, Boltzmann had already used discrete energy levels as early as 1872. Yet his work was heavily criticized by the neopositivists around Ernst Mach and seemed to receive very little attention in the last years of his life when a great number of physicists did not believe in atoms. It is the tragedy of Boltzmann's life that he did not experience the glorius victory of his ideas, but died under the gloomy vision that the work of his whole life was doomed to oblivion.  相似文献   

7.
This paper aims to show that the development of Feyerabend's philosophical ideas in the 1950s and 1960s largely took place in the context of debates on quantum mechanics.In particular, he developed his influential arguments for pluralism in science in discussions with the quantum physicist David Bohm, who had developed an alternative approach to quantum physics which (in Feyerabend's perception) was met with a dogmatic dismissal by some of the leading quantum physicists. I argue that Feyerabend's arguments for theoretical pluralism and for challenging established theories were connected to his objections to the dogmatism and conservatism he observed in quantum physics.However, as Feyerabend gained insight into the physical details and historical complexities which led to the development of quantum mechanics, he gradually became more modest in his criticisms. His writings on quantum mechanics especially engaged with Niels Bohr; initially, he was critical of Bohr's work in quantum mechanics, but in the late 1960s, he completely withdrew his criticism and even praised Bohr as a model scientist. He became convinced that however puzzling quantum mechanics seemed, it was methodologically unobjectionable – and this was crucial for his move towards ‘anarchism’ in philosophy of science.  相似文献   

8.
One finds, in Maxwell's writings on thermodynamics and statistical physics, a conception of the nature of these subjects that differs in interesting ways from the way they are usually conceived. In particular, though—in agreement with the currently accepted view—Maxwell maintains that the second law of thermodynamics, as originally conceived, cannot be strictly true, the replacement he proposes is different from the version accepted by most physicists today. The modification of the second law accepted by most physicists is a probabilistic one: although statistical fluctuations will result in occasional spontaneous differences in temperature or pressure, there is no way to predictably and reliably harness these to produce large violations of the original version of the second law. Maxwell advocates a version of the second law that is strictly weaker; the validity of even this probabilistic version is of limited scope, limited to situations in which we are dealing with large numbers of molecules en masse and have no ability to manipulate individual molecules. Connected with this is his conception of the thermodynamic concepts of heat, work, and entropy; on the Maxwellian view, these are concept that must be relativized to the means we have available for gathering information about and manipulating physical systems. The Maxwellian view is one that deserves serious consideration in discussions of the foundation of statistical mechanics. It has relevance for the project of recovering thermodynamics from statistical mechanics because, in such a project, it matters which version of the second law we are trying to recover.  相似文献   

9.
In this paper I discuss the work on quantum physics and wave mechanics by Charles Galton Darwin, a Cambridge wrangler of the last generation, as a case study to better understand the early reception of quantum physics in Britain. I argue that his proposal in the early 1920s to abandon the strict conservation of energy, as well as his enthusiastic embracement of wave mechanics at the end of the decade, can be easily understood by tracing his ontological and epistemological commitments to his early training in the Cambridge Mathematical Tripos. I also suggest that Darwin's work cannot be neglected in a study of quantum physics in Britain, since he was one of very few fellows of the Royal Society able to judge and explain quantum physics and quantum mechanics.  相似文献   

10.
In the 1830s, W. R. Hamilton established a formal analogy between optics and mechanics by constructing a mathematical equivalence between the extremum principles of ray optics (Fermat's principle) and corpuscular mechanics (Maupertuis's principle). Almost a century later, this optical-mechanical analogy played a central role in the development of wave mechanics. Schrödinger was well acquainted with Hamilton's analogy through earlier studies. From Schrödinger's research notebooks, we show how he used the analogy as a heuristic tool to develop de Broglie's ideas about matter waves and how the role of the analogy in his thinking changed from a heuristic tool into a formal constraint on possible wave equations. We argue that Schrödinger only understood the full impact of the optical-mechanical analogy during the preparation of his second communication on wave mechanics: Classical mechanics is an approximation to the new undulatory mechanics, just as ray optics is an approximation to wave optics. This completion of the analogy convinced Schrödinger to stick to a realist interpretation of the wave function, in opposition to the emerging mainstream. The transformations in Schrödinger's use of the optical-mechanical analogy can be traced in his research notebooks, which offer a much more complete picture of the development of wave mechanics than has been previously thought possible.  相似文献   

11.
I give a brief account of the way in which thermodynamics and statistical mechanics actually work as contemporary scientific theories, and in particular of what statistical mechanics contributes to thermodynamics over and above any supposed underpinning of the latter׳s general principles. In doing so, I attempt to illustrate that statistical mechanics should not be thought of wholly or even primarily as itself a foundational project for thermodynamics, and that conceiving of it this way potentially distorts the foundational study of statistical mechanics itself.  相似文献   

12.
This paper examines the contribution of Gabrio Piola to continuum mechanics.Though he was undoubtably a skilled mathematician and a good mechanician, little is commonly known about his papers within the international scientific community, principally because a large part of the Italian school of mechanics was isolated in the first half of the XIXth century.We examine and comment on Piola’s most important papers, and compare them with those of his contemporaries Cauchy, Poisson and Kirchhoff.  相似文献   

13.
14.
In his treatises Hero of Alexandria describes a range of devices for producing spectacles and generating wonder that have frequently been treated as marginal by historians of technology and science. In this paper I shall show that these devices and Hero’s emphasis on wonder-making are of central importance to the image that Hero presents of mechanics. Hero uses the concept of wonder to add an intellectual component to the utility of mechanics, to strengthen the epistemological claims of mechanics and to relate mechanical expertise to divine cunning. He is thereby able to present mechanics as a form of knowledge which is epistemically on a par with philosophy, but which still maintains powerful practical consequence.  相似文献   

15.
Recent insights into the conceptual structure of localization in QFT (modular localization) led to clarifications of old unsolved problems. The oldest one is the Einstein–Jordan conundrum which led Jordan in 1925 to the discovery of quantum field theory. This comparison of fluctuations in subsystems of heat bath systems (Einstein) with those resulting from the restriction of the QFT vacuum state to an open subvolume (Jordan) leads to a perfect analogy; the globally pure vacuum state becomes upon local restriction a strongly impure KMS state. This phenomenon of localization-caused thermal behavior as well as the vacuum-polarization clouds at the causal boundary of the localization region places localization in QFT into a sharp contrast with quantum mechanics and justifies the attribute “holstic”. In fact it positions the E–J Gedankenexperiment into the same conceptual category as the cosmological constant problem and the Unruh Gedankenexperiment. The holistic structure of QFT resulting from “modular localization” also leads to a revision of the conceptual origin of the crucial crossing property which entered particle theory at the time of the bootstrap S-matrix approach but suffered from incorrect use in the S-matrix settings of the dual model and string theory.The new holistic point of view, which strengthens the autonomous aspect of QFT, also comes with new messages for gauge theory by exposing the clash between Hilbert space structure and localization and presenting alternative solutions based on the use of stringlocal fields in Hilbert space. Among other things this leads to a reformulation of the Englert–Higgs symmetry breaking mechanism.  相似文献   

16.
It is widely believed that the underlying reality behind statistical mechanics is a deterministic and unitary time evolution of a many-particle wave function, even though this is in conflict with the irreversible, stochastic nature of statistical mechanics. The usual attempts to resolve this conflict for instance by appealing to decoherence or eigenstate thermalization are riddled with problems. This paper considers theoretical physics of thermalized systems as it is done in practice and shows that all approaches to thermalized systems presuppose in some form limits to linear superposition and deterministic time evolution. These considerations include, among others, the classical limit, extensivity, the concepts of entropy and equilibrium, and symmetry breaking in phase transitions and quantum measurement. As a conclusion, the paper suggests that the irreversibility and stochasticity of statistical mechanics should be taken as a real property of nature. It follows that a gas of a macroscopic number N of atoms in thermal equilibrium is best represented by a collection of N wave packets of a size of the order of the thermal de Broglie wave length, which behave quantum mechanically below this scale but classically sufficiently far beyond this scale. In particular, these wave packets must localize again after scattering events, which requires stochasticity and indicates a connection to the measurement process.  相似文献   

17.
Since the beginning of quantum mechanics, attempts were made to derive it from simple natural axioms or assumptions. These reconstructions suffered from various defects, including the questionable naturalness or the overabundance of the axioms, the mathematical difficulty of the derivation, and the inclusion of a wider range of theories than just quantum mechanics. Recently, in 2001, Lucien Hardy propounded “five reasonable axioms” that seem to elude such criticism. The present paper purports to give a simplified version of this new foundation, to discuss Hardy׳s original version and subsequent variants by others authors, and to investigate the nature of the relevant axioms in light of their possible connection with correspondence arguments.  相似文献   

18.
A stability condition for Bayesian statistical inference, which Redei [(1992). When can non-commutative statistical inference be Bayesian? International Studies in the Philosophy of Science, 6, 129–132; (1998). Quantum logic in algebraic approach. Dordrecht: Kluwer Academic Publishers] formulated as a rationality constraint holding in classical probability theory, is shown to fail in quantum mechanics. That allegedly challenges a Bayesian interpretation of quantum probabilities. In this paper we demonstrate that Redei's argument does not apply to quantum mechanics. Moreover, we provide a solution to the problem of Bayesian noncommutative statistical inference arising from the violation of stability condition in general probability spaces.  相似文献   

19.
It is part of information theory folklore that, while quantum theory prohibits the generic (or universal) cloning of states, such cloning is allowed by classical information theory. Indeed, many take the phenomenon of no-cloning to be one of the features that distinguishes quantum mechanics from classical mechanics. In this paper, we argue that pace conventional wisdom, in the case where one does not include a machine system, there is an analog of the no-cloning theorem for classical systems. However, upon adjoining a non-trivial machine system (or ancilla) one finds that, pace the quantum case, the obstruction to cloning disappears for pure states. We begin by discussing some conceptual points and category-theoretic generalities having to do with cloning, and proceed to discuss no-cloning in both the case of (non-statistical) classical mechanics and classical statistical mechanics.  相似文献   

20.
Heinrich Hertz dedicated the last four years of his life to a systematic reformulation of mechanics. One of the main issues that troubled Hertz in the customary formulation of mechanics was a ‘logical obscurity’ in the notion of force. However, it is unclear what this logical obscurity was, hence it is unclear how Hertz took himself to have avoided it.In this paper, I argue that a subtle ambiguity in Newton's original laws of motion lay at the basis of Hertz's concerns; an ambiguity which led to the development of two slightly different notions of force. I then show how Hertz avoided this ambiguity by deriving a unitary notion of force, thus dispelling the obscurity that lurked in the customary representation of mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号