首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
In plants, RNA editing is a process for converting a specific nucleotide of RNA from C to U and less frequently from U to C in mitochondria and plastids. To specify the site of editing, the cis-element adjacent to the editing site functions as a binding site for the trans-acting factor. Genetic approaches using Arabidopsis thaliana have clarified that a member of the protein family with pentatricopeptide repeat (PPR) motifs is essential for RNA editing to generate a translational initiation codon of the chloroplast ndhD gene. The PPR motif is a highly degenerate unit of 35 amino acids and appears as tandem repeats in proteins that are involved in RNA maturation steps in mitochondria and plastids. The Arabidopsis genome encodes approximately 450 members of the PPR family, some of which possibly function as trans-acting factors binding the cis-elements of the RNA editing sites to facilitate access of an unidentified RNA editing enzyme. Based on this breakthrough in the research on plant RNA editing, I would like to discuss the possible steps of co-evolution of RNA editing events and PPR proteins. Received 30 September 2005; received after revision 5 November 2005; accepted 28 November 2005  相似文献   

5.
Antisense-mediated redirection of mRNA splicing   总被引:6,自引:0,他引:6  
Antisense technology has been used to study basic biological processes, and to block these processes when they deleteriously lead to human disease. A separate, equally important application of antisense technology is to upregulate the gene expression lost in the diseased state by shifting alternative splicing of pre-messenger RNA. This strategy has commonly relied upon the use of antisense oligonucleotides; however, another approach is to use a plasmid construct to generate antisense RNA inside the cell. Antisense therapeutics based on expression vectors and viral vectors offers a gene therapy approach, whereas those based on oligonucleotides offers a more drug like approach.  相似文献   

6.
7.
RNA processing and human disease   总被引:9,自引:0,他引:9  
Gene expression involves multiple regulated steps leading from gene to active protein. Many of these steps involve some aspect of RNA processing. Diseases caused by mutations that directly affect RNA processing are relatively rare compared with mutations that disrupt protein function. The vast majority of diseases of RNA processing result from loss of function of a single gene due to mutations in cis-acting elements required for pre-messenger RNA (mRNA) splicing. However, a few diseases are caused by alterations in the trans-acting factors required for RNA processing and in the vast majority of cases it is the pre-mRNA splicing machinery that is affected. Clearly, alterations that disrupt splicing of pre-mRNAs from large numbers of genes would be lethal at the cellular level. A common theme among these diseases is that only subsets of genes are affected. This is consistent with an emerging view that different subsets of exons require different sets of cis-acting elements and trans-acting factors.  相似文献   

8.
Recent advances in mammalian RNA editing   总被引:7,自引:0,他引:7  
  相似文献   

9.
10.
mRNA processing in the Trypanosomatidae   总被引:5,自引:0,他引:5  
K Perry  N Agabian 《Experientia》1991,47(2):118-128
  相似文献   

11.
12.
The polypyrimidine tract binding protein (PTB) is a 58-kDa RNA binding protein involved in multiple aspects of mRNA metabolism including splicing regulation, polyadenylation, 3′end formation, internal ribosomal entry site-mediated translation, RNA localization and stability. PTB contains four RNA recognition motifs (RRMs) separated by three linkers. In this review we summarize structural information on PTB in solution that has been gathered during the past 7 years using NMR spectroscopy and small-angle X-ray scattering. The structures of all RRMs of PTB in their free state and in complex with short pyrimidine tracts, as well as a structural model of PTB RRM2 in complex with a peptide, revealed unusual structural features that provided new insights into the mechanisms of action of PTB in the different processes of RNA metabolism and in particular splicing regulation. Received 16 August 2007; received after revision 18 September 2007; accepted 2 October 2007  相似文献   

13.
DNA sequence studies of mutated and wild type alleles of an intron in the mosaic mitochondrial gene for cytochrome b have revealed the possible existence of a protein coded in the intron and involved in RNA splicing. This protein would be endowed with properties of intrinsic autotomy of its own messenger RNA.  相似文献   

14.
The terminal RNA uridylyltransferases (TUTases) catalyze transfer of UMP residues to the 3' hydroxyl group of RNA. These activities are widespread among eukaryotes and appear to be involved in a variety of RNA-processing pathways. Recent studies of RNA editing in trypanosomatids have provided the first insights into the biological functions of RNA uridylyltransferases, which had eluded biochemical identification despite 30-year-old evidence of such activities in mammals and plants. Comparative sequence analysis of trypanosomal TUTases and their homologs revealed by large-scale genomic projects demonstrates a significant level of biochemical and structural diversity between putative uridylyltransferases. The conserved catalytic domain has acquired additional protein modules and appears to have adapted to perform functionally distinct tasks of guided U-insertion into mRNA and constrained addition of an oligo[U] tail to guide RNAs. Here I discuss the current knowledge of this novel enzyme family and possible roles of RNA uridylylation in the regulation of gene expression.  相似文献   

15.
16.
17.
18.
RNA-mediated gene silencing   总被引:21,自引:0,他引:21  
  相似文献   

19.
Diversity and roles of (t)RNA ligases   总被引:1,自引:1,他引:0  
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号