首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil pathogens and spatial patterns of seedling mortality in a temperate tree   总被引:24,自引:0,他引:24  
Packer A  Clay K 《Nature》2000,404(6775):278-281
The Janzen-Connell hypothesis proposes that host-specific, distance- and/or density-dependent predators and herbivores maintain high tree diversity in tropical forests. Negative feedback between plant and soil communities could be a more effective mechanism promoting species coexistence because soil pathogens can increase rapidly in the presence of their host, causing conditions unfavourable for local conspecific recruitment. Here we show that a soil pathogen leads to patterns of seedling mortality in a temperate tree (Prunus serotina) as predicted by the Janzen-Connell hypothesis. In the field, the mean distance to parent of seedling cohorts shifted away from maternal trees over a period of 3 years. Seedlings were grown in soil collected 0-5 m or 25-30 m from Prunus trees. Sterilization of soil collected beneath trees improved seedling survival relative to unsterilized soil, whereas sterilization of distant soil did not affect survival. Pythium spp., isolated from roots of dying seedlings and used to inoculate healthy seedlings, decreased survival by 65% relative to controls. Our results provide the most complete evidence that native pathogens influence tree distributions, as predicted by the Janzen-Connell hypothesis, and suggest that similar ecological mechanisms operate in tropical and temperate forests.  相似文献   

2.
Positive feedbacks promote power-law clustering of Kalahari vegetation   总被引:2,自引:0,他引:2  
The concept of local-scale interactions driving large-scale pattern formation has been supported by numerical simulations, which have demonstrated that simple rules of interaction are capable of reproducing patterns observed in nature. These models of self-organization suggest that characteristic patterns should exist across a broad range of environmental conditions provided that local interactions do indeed dominate the development of community structure. Readily available observations that could be used to support these theoretical expectations, however, have lacked sufficient spatial extent or the necessary diversity of environmental conditions to confirm the model predictions. We use high-resolution satellite imagery to document the prevalence of self-organized vegetation patterns across a regional rainfall gradient in southern Africa, where percent tree cover ranges from 65% to 4%. Through the application of a cellular automata model, we find that the observed power-law distributions of tree canopy cluster sizes can arise from the interacting effects of global-scale resource constraints (that is, water availability) and local-scale facilitation. Positive local feedbacks result in power-law distributions without entailing threshold behaviour commonly associated with criticality. Our observations provide a framework for integrating a diverse suite of previous studies that have addressed either mean wet season rainfall or landscape-scale soil moisture variability as controls on the structural dynamics of arid and semi-arid ecosystems.  相似文献   

3.
DV Spracklen  SR Arnold  CM Taylor 《Nature》2012,489(7415):282-285
Vegetation affects precipitation patterns by mediating moisture, energy and trace-gas fluxes between the surface and atmosphere. When forests are replaced by pasture or crops, evapotranspiration of moisture from soil and vegetation is often diminished, leading to reduced atmospheric humidity and potentially suppressing precipitation. Climate models predict that large-scale tropical deforestation causes reduced regional precipitation, although the magnitude of the effect is model and resolution dependent. In contrast, observational studies have linked deforestation to increased precipitation locally but have been unable to explore the impact of large-scale deforestation. Here we use satellite remote-sensing data of tropical precipitation and vegetation, combined with simulated atmospheric transport patterns, to assess the pan-tropical effect of forests on tropical rainfall. We find that for more than 60 per cent of the tropical land surface (latitudes 30 degrees south to 30 degrees north), air that has passed over extensive vegetation in the preceding few days produces at least twice as much rain as air that has passed over little vegetation. We demonstrate that this empirical correlation is consistent with evapotranspiration maintaining atmospheric moisture in air that passes over extensive vegetation. We combine these empirical relationships with current trends of Amazonian deforestation to estimate reductions of 12 and 21 per cent in wet-season and dry-season precipitation respectively across the Amazon basin by 2050, due to less-efficient moisture recycling. Our observation-based results complement similar estimates from climate models, in which the physical mechanisms and feedbacks at work could be explored in more detail.  相似文献   

4.
黄冬柳  朱师丹 《广西科学》2023,30(4):634-642
热带亚热带喀斯特地区具有丰富且独特的自然资源,是我国重要的生态功能区,但也面临严重的石漠化问题。水分是影响该地区天然林结构功能和石漠化植被修复的关键环境因素。基于树木水分生理的研究有助于深入地了解喀斯特树种干旱适应策略,可为气候变化背景下喀斯特地区森林(天然林和人工林)的可持续发展提供理论依据。本文从水分来源、木质部水力结构以及蒸腾耗水等方面总结了近年来该区域喀斯特天然林树种在水分适应策略方面的研究进展,发现典型喀斯特树种能够稳定地利用岩溶水,其蒸腾耗水量的季节动态较小,且其茎木质部的抗栓塞能力强,在极端干旱时期可通过脆弱性分割维持水力安全。另外,基于树木水分生理的研究还能够为石漠化生态恢复适宜树种的筛选和人工林的经营管理提供科学依据。部分抗性强、耗水少的珍贵用材树种兼顾生态和经济效益,可用于石漠化地区的植被修复。建议今后的研究结合控制实验平台,长期监测树种生长和水分动态变化,基于多重机制系统阐明喀斯特森林树种的生态适应策略。  相似文献   

5.
Phosphorus (P) is generally considered the most common limiting nutrient for productivity of mature tropical lowland forests growing on highly weathered soils. It is often assumed that P limitation also applies to young tropical forests, but nitrogen (N) losses during land-use change may alter the stoichiometric balance of nutrient cycling processes. In the Amazon basin, about 16% of the original forest area has been cleared, and about 30-50% of cleared land is estimated now to be in some stage of secondary forest succession following agricultural abandonment. Here we use forest age chronosequences to demonstrate that young successional forests growing after agricultural abandonment on highly weathered lowland tropical soils exhibit conservative N-cycling properties much like those of N-limited forests on younger soils in temperate latitudes. As secondary succession progresses, N-cycling properties recover and the dominance of a conservative P cycle typical of mature lowland tropical forests re-emerges. These successional shifts in N:P cycling ratios with forest age provide a mechanistic explanation for initially lower and then gradually increasing soil emissions of the greenhouse gas nitrous oxide (N(2)O). The patterns of N and P cycling during secondary forest succession, demonstrated here over decadal timescales, are similar to N- and P-cycling patterns during primary succession as soils age over thousands and millions of years, thus revealing that N availability in terrestrial ecosystems is ephemeral and can be disrupted by either natural or anthropogenic disturbances at several timescales.  相似文献   

6.
Low host specificity of herbivorous insects in a tropical forest   总被引:20,自引:0,他引:20  
Novotny V  Basset Y  Miller SE  Weiblen GD  Bremer B  Cizek L  Drozd P 《Nature》2002,416(6883):841-844
Two decades of research have not established whether tropical insect herbivores are dominated by specialists or generalists. This impedes our understanding of species coexistence in diverse rainforest communities. Host specificity and species richness of tropical insects are also key parameters in mapping global patterns of biodiversity. Here we analyse data for over 900 herbivorous species feeding on 51 plant species in New Guinea and show that most herbivorous species feed on several closely related plant species. Because species-rich genera are dominant in tropical floras, monophagous herbivores are probably rare in tropical forests. Furthermore, even between phylogenetically distant hosts, herbivore communities typically shared a third of their species. These results do not support the classical view that the coexistence of herbivorous species in the tropics is a consequence of finely divided plant resources; non-equilibrium models of tropical diversity should instead be considered. Low host specificity of tropical herbivores reduces global estimates of arthropod diversity from 31 million (ref. 1) to 4 6 million species. This finding agrees with estimates based on taxonomic collections, reconciling an order of magnitude discrepancy between extrapolations of global diversity based on ecological samples of tropical communities with those based on sampling regional faunas.  相似文献   

7.
A unifying framework for dinitrogen fixation in the terrestrial biosphere   总被引:8,自引:0,他引:8  
Houlton BZ  Wang YP  Vitousek PM  Field CB 《Nature》2008,454(7202):327-330
Dinitrogen (N(2)) fixation is widely recognized as an important process in controlling ecosystem responses to global environmental change, both today and in the past; however, significant discrepancies exist between theory and observations of patterns of N(2) fixation across major sectors of the land biosphere. A question remains as to why symbiotic N(2)-fixing plants are more abundant in vast areas of the tropics than in many of the mature forests that seem to be nitrogen-limited in the temperate and boreal zones. Here we present a unifying framework for terrestrial N(2) fixation that can explain the geographic occurrence of N(2) fixers across diverse biomes and at the global scale. By examining trade-offs inherent in plant carbon, nitrogen and phosphorus capture, we find a clear advantage to symbiotic N(2) fixers in phosphorus-limited tropical savannas and lowland tropical forests. The ability of N(2) fixers to invest nitrogen into phosphorus acquisition seems vital to sustained N(2) fixation in phosphorus-limited tropical ecosystems. In contrast, modern-day temperatures seem to constrain N(2) fixation rates and N(2)-fixing species from mature forests in the high latitudes. We propose that an analysis that couples biogeochemical cycling and biophysical mechanisms is sufficient to explain the principal geographical patterns of symbiotic N(2) fixation on land, thus providing a basis for predicting the response of nutrient-limited ecosystems to climate change and increasing atmospheric CO(2).  相似文献   

8.
Primary forests are irreplaceable for sustaining tropical biodiversity   总被引:6,自引:0,他引:6  
Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.  相似文献   

9.
Pervasive alteration of tree communities in undisturbed Amazonian forests   总被引:1,自引:0,他引:1  
Amazonian rainforests are some of the most species-rich tree communities on earth. Here we show that, over the past two decades, forests in a central Amazonian landscape have experienced highly nonrandom changes in dynamics and composition. Our analyses are based on a network of 18 permanent plots unaffected by any detectable disturbance. Within these plots, rates of tree mortality, recruitment and growth have increased over time. Of 115 relatively abundant tree genera, 27 changed significantly in population density or basal area--a value nearly 14 times greater than that expected by chance. An independent, eight-year study in nearby forests corroborates these shifts in composition. Contrary to recent predictions, we observed no increase in pioneer trees. However, genera of faster-growing trees, including many canopy and emergent species, are increasing in dominance or density, whereas genera of slower-growing trees, including many subcanopy species, are declining. Rising atmospheric CO2 concentrations may explain these changes, although the effects of this and other large-scale environmental alterations remain uncertain. These compositional changes could have important impacts on the carbon storage, dynamics and biota of Amazonian forests.  相似文献   

10.
Volkov I  Banavar JR  He F  Hubbell SP  Maritan A 《Nature》2005,438(7068):658-661
The recurrent patterns in the commonness and rarity of species in ecological communities--the relative species abundance--have puzzled ecologists for more than half a century. Here we show that the framework of the current neutral theory in ecology can easily be generalized to incorporate symmetric density dependence. We can calculate precisely the strength of the rare-species advantage that is needed to explain a given RSA distribution. Previously, we demonstrated that a mechanism of dispersal limitation also fits RSA data well. Here we compare fits of the dispersal and density-dependence mechanisms for empirical RSA data on tree species in six New and Old World tropical forests and show that both mechanisms offer sufficient and independent explanations. We suggest that RSA data cannot by themselves be used to discriminate among these explanations of RSA patterns--empirical studies will be required to determine whether RSA patterns are due to one or the other mechanism, or to some combination of both.  相似文献   

11.
物种间区域分布与局域多度之间的正相关关系是宏生态学的经典模式之一,即局域高密度的物种地理分布范围广,而局域低密度的物种地理分布范围较窄.这种模式在不同的大型生物类群中得到了广泛的证实.但是微生物群落的相关研究还比较薄弱,并且已有工作主要集中在水体环境中.本文以内蒙古草地土壤细菌为研究对象,在3个不同的空间尺度上采集土壤样品,探讨土壤细菌区域分布与局域多度之间的关系.结果表明,在不同的地理尺度上,土壤细菌区域分布与局域多度之间均呈现显著的正相关关系,二者之间的相关性随分类阶元的降低而有所减弱.该结果暗示细菌群落中常见种和稀有种的多样性维持机制可能存在差异,生态位和中性过程可能同时在起作用.  相似文献   

12.
Lambers JH  Clark JS  Beckage B 《Nature》2002,417(6890):732-735
Ecologists have long postulated that density-dependent mortality maintains high tree diversity in the tropics. If species experience greater mortality when abundant, then more rare species can persist. Agents of density-dependent mortality (such as host-specific predators, and pathogens) may be more prevalent or have stronger effects in tropical forests, because they are not limited by climatic factors. If so, decreasing density-dependent mortality with increasing latitude could partially explain the observed latitudinal gradient in tree diversity. This hypothesis has never been tested with latitudinal data. Here we show that several temperate tree species experience density-dependent mortality between seed dispersal and seedling establishment. The proportion of species affected is equivalent to that in tropical forests, failing to support the hypothesis that this mechanism is more prevalent at tropical latitudes. We further show that density-dependent mortality is misinterpreted in previous studies. Our results and evidence from other studies suggest that density-dependent mortality is important in many forests. Thus, unless the strength of density-dependent mortality varies with latitude, this mechanism is not likely to explain the high diversity of tropical forests.  相似文献   

13.
Low beta diversity of herbivorous insects in tropical forests   总被引:1,自引:0,他引:1  
Recent advances in understanding insect communities in tropical forests have contributed little to our knowledge of large-scale patterns of insect diversity, because incomplete taxonomic knowledge of many tropical species hinders the mapping of their distribution records. This impedes an understanding of global biodiversity patterns and explains why tropical insects are under-represented in conservation biology. Our study of approximately 500 species from three herbivorous guilds feeding on foliage (caterpillars, Lepidoptera), wood (ambrosia beetles, Coleoptera) and fruit (fruitflies, Diptera) found a low rate of change in species composition (beta diversity) across 75,000 square kilometres of contiguous lowland rainforest in Papua New Guinea, as most species were widely distributed. For caterpillars feeding on large plant genera, most species fed on multiple host species, so that even locally restricted plant species did not support endemic herbivores. Large plant genera represented a continuously distributed resource easily colonized by moths and butterflies over hundreds of kilometres. Low beta diversity was also documented in groups with differing host specificity (fruitflies and ambrosia beetles), suggesting that dispersal limitation does not have a substantial role in shaping the distribution of insect species in New Guinea lowland rainforests. Similar patterns of low beta diversity can be expected in other tropical lowland rainforests, as they are typically situated in the extensive low basins of major tropical rivers similar to the Sepik-Ramu region of New Guinea studied here.  相似文献   

14.
Volkov I  Banavar JR  Hubbell SP  Maritan A 《Nature》2007,450(7166):45-49
A formidable many-body problem in ecology is to understand the complex of factors controlling patterns of relative species abundance (RSA) in communities of interacting species. Unlike many problems in physics, the nature of the interactions in ecological communities is not completely known. Although most contemporary theories in ecology start with the basic premise that species interact, here we show that a theory in which all interspecific interactions are turned off leads to analytical results that are in agreement with RSA data from tropical forests and coral reefs. The assumption of non-interacting species leads to a sampling theory for the RSA that yields a simple approximation at large scales to the exact theory. Our results show that one can make significant theoretical progress in ecology by assuming that the effective interactions among species are weak in the stationary states in species-rich communities such as tropical forests and coral reefs.  相似文献   

15.
Averting biodiversity collapse in tropical forest protected areas   总被引:3,自引:0,他引:3  
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world’s major tropical regions. Our analysis reveals great variation in reserve ‘health’: about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.  相似文献   

16.
Morris RJ  Lewis OT  Godfray HC 《Nature》2004,428(6980):310-313
The herbivorous insects of tropical forests constitute some of the most diverse communities of living organisms. For this reason it has been difficult to discover the degree to which these communities are structured, and by what processes. Interspecific competition for resources does occur, but its contemporary importance is limited because most pairs of potentially competing insects feed on different host plants. An alternative way in which species can interact is through shared natural enemies, a process called apparent competition. Despite extensive theoretical discussion there are few field demonstrations of apparent competition, and none in hyper-diverse tropical communities. Here, we experimentally removed two species of herbivore from a community of leaf-mining insects in a tropical forest. We predicted that other species that share natural enemies with the two removed species would experience lower parasitism and have higher population densities in treatment compared with control sites. In both cases (on removal of a dipteran and a coleopteran leaf-miner species) we found significantly lower parasitism, and in one case (removal of the dipteran) we found significantly higher abundance a year after the manipulation. Our results suggest that apparent competition may be important in structuring tropical insect communities.  相似文献   

17.
随着全球气候变暖趋势加剧,伴之而来的干旱问题成为全球关注的热点。干旱对森林生态系统碳积累和周转可能产生显著影响,其主要过程包括植被地上部分和地下部分凋落物对土壤有机碳的输入、凋落物的分解及土壤有机碳的矿化等。笔者综合分析了近年来国内外相关研究成果,对干旱影响森林土壤有机碳的主要过程与机制进行了归纳和总结,结果表明:①干旱通过促进叶片提前脱落,短期增加森林凋落物量,长期干旱则影响森林植物生长,降低森林初级生产力从而降低植物地上凋落物量。轻度和中度干旱下植物为补偿水分缺失增加细根生物量维持植物生命力,重度干旱下植物丧失自我修复能力导致细根生物量降低,干旱也会造成细根死亡率增加。平均而言,全球范围内干旱会造成森林凋落物量降低(1.9%)和细根生物量降低(8.7%),最终减少植物有机碳向土壤的输入量。②干旱可通过改变凋落物化学性质,对分解者——土壤动物、微生物产生胁迫,从而引起凋落物分解速率下降(10%~70%)。干旱使凋落物碳氮含量变化,造成凋落物次生代谢物,如纤维素、木质素、单宁等积累,改变根系分泌物化学组分,从而影响凋落物分解。干旱导致真菌生物量和分解者等土壤动物丰度降低,增加分解者捕食压力,使相关微生物和酶活性下降,造成凋落物分解速率下降。③干旱驱动微生物群落组成变化(真菌细菌比、革兰阳阴细菌比增加),造成微生物生物量下降,活性减弱,此外还会降低腐食动物的摄食活性、酶活性,最终导致土壤有机碳矿化速率下降(10%~50%)。④干旱对土壤有机碳不同组分影响不同,干旱会减小土壤微生物生物量碳(MBC)库(2%~30%),造成表层土壤溶解性有机碳(DOC)积累(30%~60%)。而在全球范围内的不同区域,干旱对土壤有机碳积累的影响也不同,亚热带森林中干旱对土壤有机碳积累的影响多是负面的,热带森林中则相反。总体而言,干旱对森林土壤有机碳库储量影响可能不大,但降低了土壤碳周转效率。而森林土壤有机碳周转过程不仅受干旱这一单一因素影响,温度、物种等因素会共同作用于土壤有机碳的周转与积累,且单因子的简单叠加模拟可能与现实环境中多因子综合对土壤碳通量的影响有一定差别。未来需要通过长期观测、延长控制实验时间、模拟原生环境条件等,开展多因素综合实验,加强干旱对土壤动物和微生物影响的研究,以深入了解干旱对森林土壤有机碳影响的生物学与生态学的过程与机制。  相似文献   

18.
The authors tested the contents of ABA (abscisic acid), ZR (zeatin riboside), DHZR (dihydrozeatin riboside) and iPA (isopentenyl adenosine) in leafless and leafy apple trees (Red Fuji/Malus micromalus Makino) during soil drought stress. ABA concentration in drought stressed leafless trees increased significantly compared to the controls. ABA both in roots and xylem rose steadily in the earlier drought stage, reaching a maximum of 1.46 +/- 0.35 nmol g(-1) FW and 117 nmol l(-1) after the 8th day. Similar change patterns of ABA concentration was observed in the leafy trees during soil drought stress; ABA concentrations in roots and xylem sap increased and reached the maximum in the first three days; after 8th day, it decreased slightly, whereas leaf ABA concentration increased steadily in drought stressed plants throughout the duration of the experiment. Between drought stressed and control trees, no significant differences were observed in concentration of ZR and DHZR in both leafless and leafy trees; whereas iPA concentration of the drought stressed leafless and leafy plants decreased markedly in the later stage of drought. These results showed that endogenous ABA originated mainly from the roots in the earlier drought stage, and mainly from the leaves in the later drought stage. Total CTK showed no reduction in the earlier drought stage and decreased in the later drought stage.  相似文献   

19.
中国亚热带森林土壤呼吸的基本特点   总被引:1,自引:0,他引:1  
中国亚热带森林在全球森林生态系统中具有独特的植被类型及结构,长期受人类活动干扰(毁林、造林等),森林土壤碳呼吸特征不明确,较难准确估算土壤碳的分配情况.分析了我国亚热带森林土壤呼吸在不同森林类型、不同退化和恢复演替阶段,以及造林再造林等的影响条件下的变化规律.结果表明:我国亚热带区域中的天然林的土壤呼吸通常表现为针叶林(如马尾松林)<松阔或针阔混交林<季风常绿阔林;马尾松与杉木人工林广布中国亚热带地区,两种林分的CO2年通量相当,中龄林较之幼龄林,土壤有机碳库呈现减少趋势;不同研究区域相同林分的土壤呼吸效率初步表现为南强北弱;我国亚热带森林的土壤呼吸通量与世界其他地区的热带森林土壤呼吸通量相差无己,其释放的碳量对全球碳通量的影响应加以重视.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号