首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在壁面粗糙为振幅很小的正弦波的圆形管道中,周期振荡的压力梯度驱动不可压粘性流体的流动,运用摄动法求解管道内流体的近似解析速度及其体积流率.在此基础上研究了无量纲参数对速度u及体积流率Q的影响,比如雷诺数Re,无量纲的压力梯度振幅参数A,正弦波状粗糙的小振幅ε,以及波数k.其中,速度及体积流率随着Re的增加而减小;随着压力梯度振幅参数A的增加而增加.  相似文献   

2.
运用分离变量法求解了平行板微管道中线性粘弹性流体的周期电渗流动.解析求解了线性化的Poisson-Boltzmann方程,柯西动量方程和Jeffreys本构方程.通过数值计算,分析了各参数对速度剖面的影响.固定振荡雷诺数Re,当松弛时间λ1ω增大时,流体在外加电场下变得更加快速.同样,对于给定的滞后时间λ2ω,较高的振荡雷诺数Re将会导致EOF速度剖面的剧烈振荡,同时EOF速度剖面的振幅显著减小,在距离EDL远的地方,EOF速度几乎趋近于零.此外,随时间变化的速度剖面给出了对这种流动特性的进一步认识.  相似文献   

3.
建立二维数学模型,对比研究了低雷诺数下(0~100)壁面加热对直径分别为2 cm、20 μm及2 μm的微圆柱漩涡脱落的影响规律。深入探讨了直径、壁面与流体温差对圆柱绕流中漩涡生长和脱落规律、尾流区速度、温度场及涡街参数分布等的影响规律及其原因,并基于计算结果拟合出了低雷诺数下斯特劳哈尔数(Sr)与雷诺数(Re)的定量关系式。研究发现当圆柱直径降至2 μm时,与常规尺度圆柱相比微圆柱尾流区涡街的出现明显提前;而壁面加热减小了三者的差距,使三种不同直径圆柱背风区涡街出现的最低Re均降至40以下。微圆柱涡街的漩涡列距和间距之比h/l的值随着温差的增加而逐渐增大;相同温差下不同直径圆柱尾流区涡街h/l均随Re增加而减小,在相同Re下h/l值随圆柱直径的减小而明显增大。存在壁面加热时微圆柱绕流的Sr要高于无加热工况,两者之差最高可达20%左右。  相似文献   

4.
研究了水平方向存在磁场的可渗透圆柱形管道内稳态不可压缩流体的层流流动,通过引入流函数,将控制方程化为非线性常微分方程.假设抽吸/喷注雷诺数和磁场雷诺数均很小,将小雷诺数作为小参数,应用摄动法求解了问题的近似解,进一步研究了流体速度、压降及管壁表面的摩擦阻力系数.在磁场的影响下,主流方向的压降随着抽吸雷诺数的增加而降低,随着喷注雷诺数的增加而增加.壁面的摩擦阻力系数随着抽吸雷诺数或磁场强度的增加而降低.  相似文献   

5.
扩缩通道内流动和换热非线性特性的数值模拟   总被引:2,自引:2,他引:0  
对扩缩通道内流动与换热进行了数值模拟并探讨了其中的非线性特性.通过对不同突扩比ER、不同长宽比AR及不同雷诺数Re下通道内流场和温度场进行分析,给出在一定工况下对称通道内流体的流动和换热会出现偏斜等非线性现象的情况.数值模拟结果表明,存在临界雷诺数Rec使流体流动和换热形态发生转变,当Re超过Rec时,流体流动和换热不仅有对称解,还有非对称解;当Re继续增大时,流体流动和换热出现振荡.通道的几何尺寸及后缩段(表现为ER及AR)都对Rec产生影响.分析结果表明,当Re超过临界雷诺数Rec时,同一截面处上下壁面的局部努塞尔数Nu也由对称向非对称转变,上下壁面出现最大局部Nu的位置也不同.  相似文献   

6.
采用非接触测量法,考察了以水为实验体系,中等雷诺数Re为30~200,卡比萨数Ka=6.23×1010,刻有竖条纹和菱形条纹微结构壁面上液膜的波动统计特性,如平均液膜厚度、标准方差、波动振幅量纲一液膜衬底厚度、波动频率等,并与光滑不锈钢板上液膜特性进行比较,结果表明:即使在微结构壁面,液膜波动同样存在光滑进口区,微结构壁面上液膜的平均液膜厚度、波动振幅和波动频率均大于光滑不锈钢板,微结构壁面和光滑不锈钢板上液膜波动性的演变趋势沿流动方向及随Re变化均基本一致。  相似文献   

7.
基于微尺度流动的滑移模型,建立了二维微槽道内气体流动的计算方法,并开发了计算程序.对相关文献中微槽道内的气体流动进行了计算,得到了压力降和速度分布剖面图,计算结果与试验结果吻合较好.在此基础上,进一步研究了克努森数Kn、切向动量调节系数σv及雷诺数Re对速度分布的影响.当Kn>0.001时,边界滑移速度随着Kn的增大而增大;σv的变化对滑移速度的影响十分显著,σv减小时,边界滑移速度增大;在滑流区范围内与低Re时,Re的变化对边界滑移速度的影响很小.  相似文献   

8.
使用人工压缩法计算了突扩管道流.对计算所得不同雷诺数下的等压线图和流线图进行了对比分析,结果表明,在扩张截面的拐点处形成了低压区,扩张后在侧壁右侧形成了涡,且Re数越小涡越小,Re数越小涡心的位置离侧壁越近.同时在计算中也发现,Re数较大时在出口处将形成回流区,收敛速度也变慢.  相似文献   

9.
采用激光诱导荧光(PLIF)技术对十字型通道中黏弹性流体(聚环氧乙烷溶液)进行可视化研究,重点考察了雷诺数(Re)、聚合物溶液质量分数(w)和通道尺度对流体流动模式、振荡特性以及混合效果的影响。结果表明,对于牛顿流体(水),随着雷诺数增加(20相似文献   

10.
基于表面涡方法和流固耦合模型,研究了雷诺数为2.67×104时的单列圆柱流体诱导振动问题,并计算了涡云图、流体力、振动响应、涡脱落频率等.计算模拟结果很好地重现了刚性单列圆柱在小间隙比(1.5)下以宽、窄尾涡交替和多频为特征的非均匀流态,以及间隙比为2.0时的涡脱落现象.此外,还研究了单列自由振动的弹性圆柱在间隙比为2.0时的流体诱导振动问题,结果表明:在大振幅条件下,流体诱导力在x方向和y方向有较强烈的耦合;随着振幅的减小,x方向振动对y方向振动的影响可以忽略,可采用单自由度的动力学模型假设进行计算.  相似文献   

11.
运用Fluent软件对宽高比ε为0.1~1.0的矩形微通道层流流动入口段的阻力特性进行了三维数值模拟.结果表明:宽高比ε和雷诺数Re对表观摩擦因子与雷诺数乘积f_(app)Re有一定的影响.f_(app)Re值随着宽高比ε的增大而减小,在不同的Re数范围内呈现了不同的影响.当Re数小于300时,f_(app)Re值随Re数的增大而减小;Re数大于300后,f_(app)Re值随Re数变化很小.当流动达到充分发展后f_(app)Re值保持不变,且与Re数无关.此外还研究了ε和Re数对水力进口长度的影响.发现当Re数小于和等于20时,无量纲进口长度随着ε的增大逐渐减小;当Re数大于20,无量纲进口长度随着ε的增大呈先增后减的趋势,且在宽高比为0.3~0.4时达到峰值.基于得到的结果,提出了新的层流流动进口长度关系式,该式对微型设备的设计和优化具有一定的指导意义.  相似文献   

12.
采用数值模拟方法对圆管内低频率脉动层流动力学特性进行了研究,分析了管内脉动层流速度以及流体剪切应力分布特性.研究结果表明:脉动层流中出现回流现象,且速度边界效应的范围与脉动频率有关.脉动频率越大,速度边界层范围越小,边界层内速度梯度越大.在边界层内,流体剪切应力的作用方向出现周期性变化.随着振幅A的增大,壁面剪切应力先增后降,然后再增,最后趋近于某一值.而管道压降随着振幅的增大最初变化并不明显,在A=0.6时压降急剧增大,而当A0.8时明显降低.综合考虑脉动频率和振幅对壁面剪切应力与压降的影响规律,存在最佳振幅,且最佳频率为0~2.5Hz.  相似文献   

13.
热入口段对于微通道的换热有重要影响,而雷诺数Re对层流入口段的换热影响经常被忽略.据此,采用Fluent软件计算了恒壁温热边界条件下矩形微通道的换热性能,分析比较了不同Re数和不同宽高比对努谢尔数Nu的影响.结果表明:在入口区域,Re数对局部Nu数的影响不能忽略,当Re数小于125时,局部Nu数变化尤为明显;在充分发展后,Re数对Nu数的影响消失;矩形通道宽高比对局部Nu数的影响沿流动方向逐渐增大,在充分发展时达到最大值.此外计算了各工况下矩形通道的无量纲热入口段长度,发现在宽高比为3附近时,无量纲热入口段长度出现了最大值,该结果对微通道散热器优化设计具有一定的指导意义.  相似文献   

14.
声波衰减的格子-Boltzmann方法模拟   总被引:3,自引:0,他引:3  
采用格子-Boltzmann方法分别模拟了一维及二维通道内平面声波的衰减过程.模拟中,声源给定速度及密度,出口采用出口边界条件.一维模型下,y方向采用周期性边界条件;二维模型下,y方向采用无滑移边界条件.模拟结果表明:在介质黏性以及壁面摩擦(仅二维)的作用下,声波沿着传播方向逐渐衰减,速度振幅及密度振幅越来越小,压力梯度呈负指数形式减小;随着波长的增大或介质黏度的减小,声波的衰减减缓,压力梯度越小.模拟获得的速度分布、压力梯度分布以及衰减系数与理论值吻合良好.最后,给出了声源的激发声压级.  相似文献   

15.
研究了平行板微管道内周期旋转电渗流动.基于线性Poisson-Boltzmann方程和NavierStokes方程,利用本征函数展开法,求解了电渗流(Electroosmotic flow)速度和体积流率的解析解.在此基础上,研究了外加交流电场振荡频率α,旋转角速度频率ReΩ和电动宽度K对速度和体积流率的影响.结果表明,速度和体积流率的峰值随时间t先增大然后达到稳定的最大峰值,当速度峰值达到最大后,流速和体积流率都是随时间t的周期函数.速度和体积流率达到最大峰值所需要的时间随着ReΩ的增大而增大.  相似文献   

16.
T型管道中的冷热流体混合湍动效应,必将导致流体的速度波动,这是诱发管道热疲劳的流动本质原因.为了揭示这一原因,对T型管道中主管为热流体和支管为冷流体的混合过程进行了大涡模拟,对比分析了某一截面位置上的时均速度和均方根速度的实验值与模拟值.实验值与模拟值吻合良好,说明大涡模拟能够准确地预测混合过程的时均速度和速度波动.数值结果表明,x和z方向的时均速度和均方根速度沿z方向具有随着x/db的增大而趋于平稳、随y/db的增大而减小的总体趋势.  相似文献   

17.
高Re数下N-S方程有限元数值解法研究   总被引:2,自引:0,他引:2  
采用原参数形式N-S方程直接解法,研究高Re数下N-S方程数值解法,波阵技术可节省内存,提高计算效率;混合插值函数可避免求解过程中的压力振荡;时间推进解法和简化迎风有限技术可防止解的非物理振荡;低雷诺数的收敛解作为高雷诺数的初场,定常解作为非定常解初场,可提高解稳定性,加快收敛速度,最后以驱动方腔为计算实例,对解法进行了验证,得到的结果与经典结果吻合较好,为高Re数下N-S方程的数值解提供了参考。  相似文献   

18.
本文在实验的基础上提出了同心环隙逆压梯度作用下的紊流科特流的分析方法,其科特数范围为Pr≥1。对极点速度和极点坐标、壁面切应力和速度分布进行了深入的讨论。在雷诺数Re≤5.8×10~4、半径比η=1.022的条件下,理论计算与实验结果符合得很好。  相似文献   

19.
对旋转矩形通道(横截面的长宽比b/a=2)内湍流流动和换热进行了大涡数值模拟.基于一种具有二阶精度的不协调混合格式(Adams-Bashforth/Crank-Nicholson)对N-S方程进行离散.采用动态亚格子模型对雷诺应力进行了模拟.湍流雷诺数Reτ和普朗特数Pr分别为400和0.71,旋转数Roτ=0~5.分析了管道横截面内平均速度、平均温度以及湍流强度的分布.结果表明,不同的旋转轴对湍流流动和换热有重要的影响,在高旋转数时,湍流结构在稳定侧和非稳定侧均有明显的变化.在相同旋转数下,与矩形通道绕z轴旋转时相比,系统绕y轴旋转的平均换热系数有所增大.  相似文献   

20.
采用CFD技术,数值模拟了化学反应器中温度梯度对Taylor涡胞结构的影响特征,研究了径向温度梯度对轴向Taylor涡胞结构、强度及其临界雷诺数Re的影响特点.研究结果表明,径向温度梯度能抑制中部Taylor涡胞形成,致使系统的临界Re增加;随着径向温度梯度的增加,涡量向温度降低的方向迁移,涡量分布的径向梯度也随之增加;端部的Taylor涡胞强度最大,其集中涡量主要分布于内壁面,且有助于促进流体的热传递效果,中部的Taylor涡胞强度较弱,其对促进流体热传递的效果并不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号