首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell respiration in mitochondria and some bacteria is catalysed by cytochrome c oxidase, which reduces O2 to water, coupled with translocation of four protons across the mitochondrial or bacterial membrane. The enzyme's catalytic cycle consists of a reductive phase, in which the oxidized enzyme receives electrons from cytochrome c, and an oxidative phase, in which the reduced enzyme is oxidized by O2. Previous studies indicated that proton translocation is coupled energetically only to the oxidative phase, but this has been challenged. Here, with the purified enzyme inlaid in liposomes, we report time-resolved measurements of membrane potential, which show that half of the electrical charges due to proton-pumping actually cross the membrane during reduction after a preceding oxidative phase. pH measurements confirm that proton translocation also occurs during reduction, but only when immediately preceded by an oxidative phase. We conclude that all the energy for proton translocation is conserved in the enzyme during its oxidation by O2. One half of it is utilized for proton-pumping during oxidation, but the other half is unlatched for this purpose only during re-reduction of the enzyme.  相似文献   

2.
Belevich I  Verkhovsky MI  Wikström M 《Nature》2006,440(7085):829-832
Electron transfer in cell respiration is coupled to proton translocation across mitochondrial and bacterial membranes, which is a primary event of biological energy transduction. The resulting electrochemical proton gradient is used to power energy-requiring reactions, such as ATP synthesis. Cytochrome c oxidase is a key component of the respiratory chain, which harnesses dioxygen as a sink for electrons and links O2 reduction to proton pumping. Electrons from cytochrome c are transferred sequentially to the O2 reduction site of cytochrome c oxidase via two other metal centres, Cu(A) and haem a, and this is coupled to vectorial proton transfer across the membrane by a hitherto unknown mechanism. On the basis of the kinetics of proton uptake and release on the two aqueous sides of the membrane, it was recently suggested that proton pumping by cytochrome c oxidase is not mechanistically coupled to internal electron transfer. Here we have monitored translocation of electrical charge equivalents as well as electron transfer within cytochrome c oxidase in real time. The results show that electron transfer from haem a to the O2 reduction site initiates the proton pump mechanism by being kinetically linked to an internal vectorial proton transfer. This reaction drives the proton pump and occurs before relaxation steps in which protons are taken up from the aqueous space on one side of the membrane and released on the other.  相似文献   

3.
Faxén K  Gilderson G  Adelroth P  Brzezinski P 《Nature》2005,437(7056):286-289
In aerobic organisms, cellular respiration involves electron transfer to oxygen through a series of membrane-bound protein complexes. The process maintains a transmembrane electrochemical proton gradient that is used, for example, in the synthesis of ATP. In mitochondria and many bacteria, the last enzyme complex in the electron transfer chain is cytochrome c oxidase (CytcO), which catalyses the four-electron reduction of O2 to H2O using electrons delivered by a water-soluble donor, cytochrome c. The electron transfer through CytcO, accompanied by proton uptake to form H2O drives the physical movement (pumping) of four protons across the membrane per reduced O2. So far, the molecular mechanism of such proton pumping driven by electron transfer has not been determined in any biological system. Here we show that proton pumping in CytcO is mechanistically coupled to proton transfer to O2 at the catalytic site, rather than to internal electron transfer. This scenario suggests a principle by which redox-driven proton pumps might operate and puts considerable constraints on possible molecular mechanisms by which CytcO translocates protons.  相似文献   

4.
5.
Rastogi VK  Girvin ME 《Nature》1999,402(6759):263-268
F1F0 ATP synthases use a transmembrane proton gradient to drive the synthesis of cellular ATP. The structure of the cytosolic F1 portion of the enzyme and the basic mechanism of ATP hydrolysis by F1 are now well established, but how proton translocation through the transmembrane F0 portion drives these catalytic changes is less clear. Here we describe the structural changes in the proton-translocating F0 subunit c that are induced by deprotonating the specific aspartic acid involved in proton transport. Conformational changes between the protonated and deprotonated forms of subunit c provide the structural basis for an explicit mechanism to explain coupling of proton translocation by F0 to the rotation of subunits within the core of F1. Rotation of these subunits within F1 causes the catalytic conformational changes in the active sites of F1 that result in ATP synthesis.  相似文献   

6.
Proton pump coupled to cytochrome c oxidase in mitochondria.   总被引:1,自引:0,他引:1  
M K Wikstrom 《Nature》1977,266(5599):271-273
  相似文献   

7.
8.
M Wikstr?m 《Nature》1989,338(6218):776-778
Mitochondrial cytochrome oxidase is a functionally complex, membrane-bound respiratory enzyme which catalyses both the reduction of O2 to water and proton-pumping. During respiration, an exogenous donor, cytochrome c, donates four electrons to O2 bound at the bimetallic haem alpha 3 Fe-Cu centre within the enzyme. These four electron transfers are mediated by the enzyme's haem alpha and CuA redox centres and result in the translocation of four protons across the inner mitochondrial membrane. The molecular mechanism of proton translocation has not yet been delineated, however, and in the absence of direct experimental evidence all four electron transfers have been assumed to couple equally to proton-pumping. Here, I report the effects of proton-motive force and membrane potential on two equilibria involving intermediates of the bimetallic centre at different levels of O2 reduction. The results show that only two of the electron transfers, to the 'peroxy' and 'oxyferryl' intermediates of the bimetallic centre, are linked to proton translocation, a finding which strongly constrains candidate mechanisms for proton-pumping.  相似文献   

9.
The binding and electron transfer between wild type, E44A, E56A, E44/56A, E44/48/56A/D60Aand F35Y variants of cytochrome b5 and cytochrome c were studied. When mixed with cytochrome c, the cytochrome b5E44/48/56A/D60A did not show the typical UV-vis difference spectrum of absorption, indicating that the alteration ofthe surface electrostatic potential obviously influenced the spectrum. The electron transfer rates of wild type cytochromeb5, its variants and cytochrome e at different temperature and ionic strength exhibited an order of F35Y > wild type >E56A > E44A > E44/48/56A/D60A. The enthalpy and entropy of the reaction did not change obviously, suggestingthat the mutation did not significantly disturb the electron transfer conformation. The investigation of electron transfer rateconstants at different ionic strength demonstrated that electrostatic interaction obviously affected the electron transfer pro-cess. The significant difference of Cyt b5 F35Y and E44/48/56A/D60A from the wild type protein further confirmed thegreat importance of the electrostatic interaction in the protein electron transfer.  相似文献   

10.
R Bechtold  C Kuehn  C Lepre  S S Isied 《Nature》1986,322(6076):286-288
Cytochrome c can be modified by [(NH3)5RuII/III-] specifically at the imidazole moiety of histidine 33, and we have recently discussed the thermodynamics and kinetics of electron transfer within this modified protein. X-ray crystal structures of the oxidized and reduced forms of tuna cytochrome c indicate that the separation between the haem group of cytochrome c and the ruthenium label is 12-16 A. Internal electron transfer from the [(NH3)5RuII-] centre to the Fe(III) haem centre occurs with a rate constant k congruent to 53 s-1 (25 degrees C) (delta H = 3.5 kcal mol-1, delta S = -39 EU), as measured by pulse radiolysis. The measured unimolecular rate constant, k congruent to 53 s-1, is on the same timescale as a number of conformational changes that occur within the cytochrome c molecule. These results raise the question of whether electron transfer or protein conformational change is the rate limiting step in this process. We describe here an experiment that probes this intramolecular electron transfer step further. It involves reversing the direction of electron transfer by changing the redox potential of the ruthenium label. Electron transfer in the new ruthenium-cytochrome c derivative described here is from haem(II) to the Ru(III) label, whereas in (NH3)5Ru-cytochrome c the electron transfer is from Ru(II) to haem(III). Intramolecular electron transfer from haem(II) to Ru(III) in the new ruthenium-cytochrome c described here proceeds much slower (greater than 10(5) times) than the electron transfer from Ru(II) to haem(III) in the (NH3)5Ru-cytochrome c. We therefore conclude that electron transfer in cytochrome c is directional, with the protein envelope presumably involved in this directionality.  相似文献   

11.
Cytochrome c oxidase is a member of the haem copper oxidase superfamily (HCO). HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme's function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c. Here we report the crystal structure of the caa3-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36?? resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain, which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented.  相似文献   

12.
Molecular mechanism of vectorial proton translocation by bacteriorhodopsin   总被引:15,自引:0,他引:15  
Subramaniam S  Henderson R 《Nature》2000,406(6796):653-657
Bacteriorhodopsin, a membrane protein with a relative molecular mass of 27,000, is a light driven pump which transports protons across the cell membrane of the halophilic organism Halobacterium salinarum. The chromophore retinal is covalently attached to the protein via a protonated Schiff base. Upon illumination, retinal is isomerized. The Schiff base then releases a proton to the extracellular medium, and is subsequently reprotonated from the cytoplasm. An atomic model for bacteriorhodopsin was first determined by Henderson et al, and has been confirmed and extended by work in a number of laboratories in the last few years. Here we present an atomic model for structural changes involved in the vectorial, light-driven transport of protons by bacteriorhodopsin. A 'switch' mechanism ensures the vectorial nature of pumping. First, retinal unbends, triggered by loss of the Schiff base proton, and second, a protein conformational change occurs. This conformational change, which we have determined by electron crystallography at atomic (3.2 A in-plane and 3.6 A vertical) resolution, is largely localized to helices F and G, and provides an 'opening' of the protein to protons on the cytoplasmic side of the membrane.  相似文献   

13.
J B Matthew  P C Weber  F R Salemme  F M Richards 《Nature》1983,301(5896):169-171
Various studies have shown that reaction rates between reversibly binding electron transfer proteins depend strongly on solution ionic strength. These observations suggest that intermolecular electrostatic interactions are important in facilitating the formation of a productive reaction complex. A recently examined system involves the reduction of vertebrate cytochrome c by bacterial flavodoxin. Although this is a nonphysiological reaction, it proceeds with rates typical for natural partners and is similarly inhibited at high ionic strengths. Here we describe computational studies which examine the role of electrostatics in the formation of a putative reaction complex between flavodoxin and cytochrome c. The results suggest that electrostatic interactions preorient the molecules before they make physical contact, facilitating the formation of an optimal reaction complex.  相似文献   

14.
15.
16.
The binding and electron transfer between wild type, E44A, E56A, E44/56A, E44/48/56A/D60A and F35Y variants of cytochrome b5 and cytochrome c were studied. When mixed with cytochrome c, the cytochrome b, E44/48/56A/D60A did not show the typical UV-vis difference spectrum of absorption, indicating that the alteration of the surface electrostatic potential obviously influenced the spectrum. The electron transfer rates of wild type cytochrome bj, its variants and cytochrome c at different temperature and ionic strength exhibited an order of F35Y > wild type > E56A > E44A > E44/48/56A/D60A. The enthalpy and entropy of the reaction did not change obviously, suggesting that the mutation did not significantly disturb the electron transfer conformation. The investigation of electron transfer rate constants at different ionic strength demonstrated that electrostatic interaction obviously affected the electron transfer process. The significant difference of Cyt b, F35Y and E44/48/56A/D60A from the wild type protein further confirmed the great importance of the electrostatic interaction in the protein electron transfer.  相似文献   

17.
18.
S Han  Y C Ching  D L Rousseau 《Nature》1990,348(6296):89-90
Cytochrome c oxidase catalyses the 4-electron reduction of dioxygen to water and translocates protons vectorially across the inner mitochondrial membrane. Proposed reaction pathways for the catalytic cycle of the O2 reduction are difficult to verify without knowing the structures of the intermediates, but we now have such information for the catalytic intermediates in the first steps of the reaction of O2 with cytochrome c oxidase from resonance Raman spectroscopy, a technique that enables iron-ligand stretching modes to be identified. Here we report on two more key intermediates: a ferryl-oxo (Fe4 = O2-) and a ferric-hydroxy (Fe3+--OH-) intermediate at the level of 3- and 4-electron reduction, respectively. We identified these intermediates by their characteristic iron-oxygen stretching frequencies (786 cm-1 for Fe4+ = O2-, and 450 cm-1 for Fe3+ -- OH-) and oxygen and deuterium isotope shifts. The oxo atom in the ferryl intermediate is hydrogen-bonded and the iron-oxygen bond in the hydroxy intermediate is anomalously weak. With the identification of the primary, ferryl and hydroxy intermediates, the predominant structures at almost all stages of O2 reduction are now known and the catalytic pathway can be described with more certainty.  相似文献   

19.
Catalytic mechanism of cytochrome oxidase   总被引:5,自引:0,他引:5  
E Antonini  M Brunori  C Greenwood  B G Malmstr?m 《Nature》1970,228(5275):936-937
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号