首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
为研究风对交通安全的影响,选择小客车和集装箱车为典型车型,采用风洞试验方法,进行了均匀流的风场模拟,得到了小客车和集装箱车受到的风作用力.以汽车动力学原理为基础,分析了汽车在弯道路段的行驶状态,建立了考虑风作用的汽车安全行驶的车速计算模型,得到了不同风速和设计速度条件下典型车型的限速值.研究结果表明:汽车受到的风作用力随风等级增加而增加;相同等级的风作用下,集装箱车受到的风作用力远大于小客车受到的力;公路设计速度越高,风力对限速值影响越大.研究成果量化了风对行驶车辆的影响,可为大风频发区的公路安全运营提供理论基础和指导.  相似文献   

2.
侧风作用下弯道行车安全速度阈值的仿真研究   总被引:1,自引:0,他引:1  
以获得弯道行驶车辆在侧风作用下的安全行驶速度阈值为目的,基于对车辆在侧风环境下弯道行驶时所受外力及力矩进行分析,建立车辆安全行驶需满足的数学模型,通过建立1∶1东风标致301轿车模型设置不同工况进行流体仿真,得到各工况下弯道行车所受气动力和力矩,根据数学模型计算得出侧风作用下弯道行车安全行驶速度阈值,对安全驾驶与高速公路限速提供一定参考。  相似文献   

3.
根据二维定常不可压缩Navier-Stokes方程和k-ε双方程紊流模型,采用有限体积法对客车、敞车、棚车和罐车4种不同外形铁路车辆在路堤高度、横风风速相同条件下的横向气动性能进行分析与比较。研究结果表明:对于车顶外形为圆弧形的车型,空气流过圆弧形车顶时流速增加,压力下降,故其升力较大;对于车顶外形为钝形的车型,车体迎风面正压区域较大,而背风侧产生较大的漩涡区,在此区域内压力较小,故其侧向力较大;在横风作用下,客车、敞车、棚车和罐车4种车型中,罐车的侧滚力矩最小,稳定性最强,敞车和客车次之,棚车的侧滚力矩最大,其稳定性最弱;在进行强横风地段挡风墙优化设计时,可将棚车作为设防车型,以保证所有列车在强横风地段运行安全。  相似文献   

4.
基于空气动力学理论,建立高速列车空气动力学模型,计算不同运行速度下高速列车在明线运行和明线横风场景下的气动力荷载。同时采用多体系统动力学理论,建立车辆多体动力学仿真模型。将气动荷载导入车辆仿真模型,计算在无横风和有横风条件下,列车以不同速度行驶时的车辆动力学响应及其安全性指标。获得在无横风和有横风条件下高速列车运行安全性随速度的变化规律。研究结果表明,横风作用将对列车的安全运行构成极大的威胁。参照有关高速列车运行安全性评定标准,给出15 m/s横风风速下高速列车安全运行的速度限值。  相似文献   

5.
降雨对山区高速公路山风过境路段行车安全及通行效率具有较大负面影响.为保证山区高速公路山风过境路段雨天行车安全,提高路段通行效率,减少风雨综合作用的不利影响,文中设计了山区高速公路山风过境路段雨天可变限速控制系统的总体方案,构建了风雨综合作用下的基于防侧滑和安全停车视距的安全车速计算模型,并以控制监控时段内车辆平均行程时间最小为目标,建立了山区高速公路山风过境路段雨天可变限速控制评价模型.结合实际道路、气象数据,利用Matlab软件进行数值仿真计算,结果表明,与固定限速方式相比,文中建立的可变限速控制方法在保障雨天环境下山区高速公路山风过境路段行车安全的同时,提高了车辆的运行效率.  相似文献   

6.
高铁线路隧道-桥梁-隧道路段常伴随强烈的横风,列车行驶至隧道与桥梁连接段时常常受到横风的突然冲击,严重影响了列车的行车安全性。基于计算流体力学RNG湍流模型和多孔介质理论,建立列车-隧道-桥梁-风屏障三维CFD数值模型和风-车-轨-桥动力耦合分析模型,研究了高速列车通过隧道-桥梁-隧道路段过程中列车的气动荷载和行车安全指标的变化特性。结果表明:桥隧相连段设置风屏障后,各节车厢的气动荷载突变幅值显著降低,降幅达50%以上,其中横向力和倾覆力矩受风屏障的影响最为显著,降幅高达88%以上;设置风屏障后列车行车安全指标显著降低,迎风侧和背风侧各轮对(除了头车1、3号轮对外)的安全指标波动幅度相同;头车的安全指标对整个列车行车安全性起控制作用,尤其是头车转向架前轮(即1、3号轮对)的;列车由隧道驶入桥梁过程中的行车安全性较由桥梁驶入隧道过程的小。  相似文献   

7.
采用基于CFD和CSD的准静态耦合方法对横风作用下货车篷布结构强度进行分析。首先建立横风作用下货车篷布数值模拟计算模型,得到不同运行工况下货车篷布表面压力分布;随后建立篷布索膜结构强度计算模型,以篷布表面压力分布为加载载荷,运用非线性有限元分析方法对不同运行工况下的篷布强度进行数值模拟计算。研究结果表明:货车以速度120 km/h在大风地区运行,当横风风速小于41.4 m/s时,采用双层焊接结构的无网篷布所受最大主应力小于篷布许用应力;当横风风速小于54 m/s时,采用双层焊接结构的有防风网篷布所受最大主应力小于篷布许用应力,满足篷布安全运行要求;篷布顶面和篷布网眼位置的最大位移和最大主应力随着货车运行速度和横风风速的增加而增大,横风风速对篷布最大位移和最大主应力的影响大于货车速度对其的影响。  相似文献   

8.
对横风激扰下的跨座式单轨车辆的运行平稳性进行分析.首先,分别采用瞬态中国帽风载模型和非定常随机风载模型模拟动态风场,建立跨座式单轨车辆动力学模型,并将两种风载模型作为外部激励分别施加到车辆上.其次,采取数值仿真方法,分析不同车速、风速、合成风向角的跨座式单轨车辆在横风作用时的动力响应.最后,对车辆运行平稳性进行评估,计算限值下的临界安全风速,得到横风激扰下跨座式单轨车辆运行的安全区域.结果表明:车速、风速和合成风向角对跨座式单轨车辆的运行平稳性有显著影响;当车速和风速过大时,车辆会发生失稳现象.  相似文献   

9.
以国产CRH3型3节车编组高速列车为研究对象,利用计算流体力学软件Star-CD/CCM+计算了在不同横风风速和不同车速下的列车气动力荷载;将该荷载导入动力学仿真软件SIM-PACK的列车运行动力学模型中,计算出在不同横风和车速条件下的脱轨系数、减载率和倾覆系数等运行稳定性参数.计算表明:头车的气动性能和运行稳定性受横风的影响最大;根据车辆动力学性能参数确定的列车安全速度限值与横风风速之间并非线性关系.参照有关高速列车运行稳定性评定标准,给出了不同横风风速下高速列车安全运行的速度限值.  相似文献   

10.
快速路行车安全的可变限速方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对快速路行车安全构建了快速路可变限速优化控制,提出基于碰撞时间的可变限速启动风险阈值预测方法,在充分考虑交通流的实时运行状态的同时优化了可变限速值的计算. 以福州市三环快速路为例,利用VISSIM仿真软件对可变限速方法进行了有效性验证. 结果表明,提出的方法能够有效减少路段的车速离散度,提高路段交通流的稳定性和安全性,且对通行效率不造成影响.  相似文献   

11.
山区公路交通安全标志设计   总被引:8,自引:2,他引:8  
为了大幅度降低山区公路交通事故率,以实地测试、调查方法以及心理认知机理,概括了山区公路的道路特征和交通事故的特点,分析了驾驶人员的安全认知和行为特性,指出了山区公路交通安全标志须以初次使用该道路的驾驶人员为设计依据。研究了山区公路不同道路环境下交通安全信息,指出山区公路应在弯道处实行大小车辆分别限速,并给出了限速方式;长大坡路段应提供整体性道路信息以及交通安全标志的设置要求;异常气候条件下须提供预警性信息。认为在山区公路建设中,可以通过对交通安全标志的合理化设计,在不大幅度改变公路线形情况下,能使山区公路弯道、长大坡等特殊路段的交通事故发生率明显降低。  相似文献   

12.
为研究风攻角对强风作用下大跨度斜拉桥车-桥系统耦合振动的影响,通过风洞试验得到不同风攻角条件下桥梁主梁和桥上不同位置处列车的三分力系数;在此基础上,依据弹性系统动力学总势能不变值原理,进一步建立风-车-桥耦合系统振动方程,求解方程并就风攻角对桥梁和列车的动力响应的影响进行分析研究。研究结果表明:风攻角对桥梁和列车的气动三分力系数影响较大;桥梁跨中处的横向振动位移在攻角为-12°时有最大值,竖向振动位移在攻角为-6°时有最大值,极大值均未在攻角为0°时出现;风攻角对车辆动力响应的影响较大,但各项动力响应受风攻角影响而出现变化的趋势并不相同;列车的脱轨系数、轮重减载率和横向力在负向攻角时比正向攻角时的大,且随负向攻角绝对值的增大有增大趋势。  相似文献   

13.
为了研究横风对高速磁浮列车运行安全的影响,本文基于三维、定常、可压N-S方程,对不同风向角作用下高速磁浮列车在复线高架桥运行的气动特性进行数值计算,并对列车表面压力、周围流场及气动力进行分析.结果表明:1)风向角越大,列车车体两侧的压差越大. 2)当风向角为0°时,尾涡具有明显的对称性,且强度及尺度都较小;当风向角为90°时,尾涡呈现明显的非对称性,且强度和尺度较大. 3)当车速一定时,列车气动载荷基本随风向角增大而增大,头车侧向力最大,尾车升力最大.气动力的最不利风向角范围集中在60°~90°.本文研究结果可为提高磁浮列车大风环境下安全运行提供理论指导和技术支撑.  相似文献   

14.
为探究城市道路不同行车道汽车运行特性,在烟台市滨海东路进行汽车运行速度样本测试试验,采用AxleLight RLU11系列路侧交通数据采集系统分车道采集试验路段汽车运行速度及车头时距样本,利用SPSS软件对试验路段不同车道运行速度样本及车头时距进行统计处理,分别绘制了不同车道运行速度及车头时距累积频率曲线,计算得到不同车道运行速度V_(85)及车头时距T_(85)。结果显示:试验路段内侧车道运行速度V_(85)比外侧车道运行速度V_(85)大,内侧车道车头时距T_(85)比外侧车道车头时距T_(85)小。建立了内侧车道和外侧车道车头时距T与运行速度V的关系模型,基于试验路段内外两条车道运行速度V_(85)及车头时距T_(85)不同,城市道路不同车道的限速值也应采取不同的限速标准,采用不同的限速标准使得内侧车道交通流能够高速运行,提高城市道路通行能力,减少城市道路拥堵问题。  相似文献   

15.
采用雷诺平均的方法对高速列车横风稳定性进行了数值模拟,重点研究了列车在侧偏角为8.77°下的横风特性。研究对象为高速列车的风洞缩比模型,将数值计算结果与实验值进行了对比。鉴于当前各类软件针对复杂列车车体横风稳定性的计算仍然不成熟,首先进行了三类商用软件的数值计算比较,分析了不同软件计算结果的精度差异。针对复杂列车外形的网格划分也是数值计算中的重要组成部分,针对两套列车网格进行了分析,研究了网格对计算精度的影响。在与实验值拟合最好结果的基础上,还着重研究了列车在横风作用下的气动特性。背风侧上下侧面拐角位置的流动分离是横风效应的最明显特征,由于流动分离而产生的涡系沿着列车背风侧向下游延伸,并且其强度也不断增强。本文还从气动力角度对横风特性展开了研究。横风条件下列车气动力与无横风相比有较大差异,对列车不同部位的气动力及其组成等进行了分析。  相似文献   

16.
为了研究随机风载下高速列车的动力学特性,提出一种随机风环境下高速列车安全平稳性评估方法。基于Kármán理论和Davenport相干函数通过谐波合成法建立随机风数值模拟模型,并推导随机风作用下的高速列车非定常气动载荷的计算公式。通过SIMPACK建立车辆系统动力学模型,计算不同随机风载作用下的高速列车以不同车速运行过程中的安全性指标及平稳性指标。最后,本文选择了包括脱轨系数、轮重减载率、轮轴横向力、Sperling平稳性指标在内的多性能指标作为目标来支持决策。通过仿真对多性能指标进行评价,验证了该模型在强风下高速列车运行动力学特性研究中的适用性。  相似文献   

17.
为分析风雨环境下城市轨道交通高架线路区段列车的横风载荷特性,采用双方程湍流模型和离散相模型相结合的方法,对不同降雨强度、横风风速和运行车速条件下列车横向风载荷进行了研究.结果表明:列车的横风载荷随着环境横风速度和列车运行速度的增大而增大,而降雨强度对列车横风载荷的影响不明显;解耦分析降雨因子影响可知,当雨滴直径小于1.6 mm时,横风载荷系数随雨量的增大而增大,随雨滴直径的增大而减小;当雨滴直径大于1.6 mm时,横风载荷系数随雨量的增大而减小,随雨滴直径的增大而增大.  相似文献   

18.
针对横风下高速列车在洞口交会时的非定常气动问题,考虑流场的三维、可压缩、湍流特性,建立隧道-列车三维空气动力学模型,利用滑移网格技术模拟列车交会过程,采用SSTκ-ω湍流模型对列车交会全过程进行求解,研究横风对隧道内瞬变压力、列车风及流场分布特性的影响规律.研究结果表明:横风下列车交会时,洞口处气动压力系数变化幅值显著增大,交会完成时,列车之间压力系数峰-峰值较无横风情形增大30.6%;列车交会开始和完成时气动压力均发生突变,隧道中部附近气动压力峰值最大;横风下列车交会气动压力大小与空间位置有关,交会时列车间气动压力变化幅值分别是列车迎、背风侧压力变化幅值的2.2和1.5倍;横风对洞口附近列车风影响显著,横风时迎风侧列车风峰值最大,无横风时背风侧列车风峰值最大,且前者是后者的2.04倍;隧道内气动效应受横风影响范围有限,当横风为30 m/s、车速为350 km/h时,隧道内气动效应受影响范围为120 m;横风下交会开始与完成时,流场分布急剧变化,导致气动压力与列车风发生突变.  相似文献   

19.
杨俊 《科学技术与工程》2012,12(15):3780-3782
速度管理是道路交通管理的重点工作之一,其目标是保障交通安全,改善交通环境,提高道路运输效率。速度管理包括法律法规、执法和工程措施等方面复杂内容。我国相关工作开展较为浅显,设置方法及管理手段简单,速度管理工作还存在一些不科学,不合理的问题。分车道限速作为速度管理中的一种,在很多城市快速路及高速公路上已得到运用。首先介绍车道变换行为对速度及安全的影响,分车道限速的一些优缺点,再根据分车道限速的影响因素,在车速限制标准的基础上,进行限速方案优化,给出一套分车道限速的合理流程及限速值的确定办法。  相似文献   

20.
针对山区地形地表类别不易确定、风环境复杂的问题,结合山西省禹门口黄河斜拉桥的实际工程,利用自行开发的桥梁风场特性分析系统,对桥址处一年多实测风速数据进行分析计算;并基于"数值风洞"模拟技术,采用Realizable和SST湍流模型,按有实桥结构和无实桥结构2种情况建模,模拟了7种工况下桥位及其周边的风场,得到了典型的西部山区峡谷风场的特点和规律。结果表明:受峡谷风效应影响,桥位风速增加;气流攻角在-9°~8°范围内,比平原地区大;风剖面应通过实测风速数据拟合,不能直接套用规范;湍流度和阵风因子小于一般气象强风条件下的值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号