首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
基于STM32的四旋翼飞行姿态串级控制   总被引:1,自引:1,他引:0  
对四旋翼飞行器飞行姿态的稳定控制问题进行了分析,设计了基于STM32系列微控制器的稳定控制系统。STM32以ARM Cortex-M3为内核,拥有强大的运算能力,作为四旋翼飞行器的飞行姿态控制器的主控芯片。采用四元素融合滤波算法对陀螺仪和电子罗盘等多传感器采集的数据进行飞行姿态解算。结合串级PID控制算法实现四旋翼飞行姿态控制系统设计。仿真及实验结果表明该控制系统符合设计要求,达到了对四旋翼飞行器飞行姿态稳定控制的目的。验证了基于STM32的串级飞行姿态控制的有效性,为后续研究奠定了基础。  相似文献   

2.
为改善滤波效果, 针对四旋翼飞行器滤波算法计算量大的问题, 采用基于Kalman 与DMP(Digital Motion Processing)滤波相结合的姿态数据处理算法及PID( Proportion-Integration-Differentiation)姿态控制算法, 设计了四旋翼飞行器控制系统。系统硬件由Arduino 控制板及四旋翼飞行器平台组成,在此平台基础上建立了飞行器动力学模型并对Kalman 滤波器及PID 控制器参数进行调试。实际飞行结果表明, 该系统能对飞行姿态的偏移进行快速调整, 调整灵敏度和稳态时间得到明显改善, 有效地完成对四旋翼飞行器的稳定控制。  相似文献   

3.
针对存在总扰动的小型四旋翼飞行器姿态控制问题,设计一种基于自抗扰技术的四旋翼飞行器姿态控制方法.首先,利用牛顿-欧拉建模方法建立小型四旋翼飞行器动力学系统模型,将其表示成二阶状态空间方程形式.然后,将系统的总扰动扩张为一个新的状态变量,并设计扩张状态观测器对系统总扰动进行估计.最后,在系统扰动估计的基础上设计非线性状态误差反馈控制律.仿真结果表明,所设计控制器对系统总扰动具有很强的鲁棒性能,实现了姿态的快速稳定控制要求.  相似文献   

4.
以上海交通大学工程训练中心运动控制实验室自行研制的小型四旋翼无人直升机为研究对象,搭建了姿态控制实验系统.根据牛顿 欧拉方程建立了小型四旋翼直升机的动力学模型,首次将自适应逆控制(AIC)方法运用于小型四旋翼直升机控制系统中,实现了小型四旋翼直升机的姿态稳定控制.仿真结果和实际飞行实验表明,AIC方法在小型四旋翼直升机姿态控制中具有很好的实时性和鲁棒性.  相似文献   

5.
以四旋翼飞行器姿态PID控制为研究目标,PID参数整定中常用的PSO算法为主要研究对象,通过不同PSO改进算法的比较和整合,提出基于FPSO思想的整定算法,基于Matlab仿真平台进行实验结果显示,FPSO算法具有明显的优势,更有利于四旋翼机器人的姿态控制。  相似文献   

6.
四旋翼无人机的非线性控制理论研究与应用(英文)   总被引:1,自引:0,他引:1  
四旋翼无人机是一类典型的非线性、动态不稳定的多输入多输出系统.首先将复杂的四旋翼动力学模型分解为两个内外环子系统,即平移动力学和姿态动力学,在此基础上研究了反步法以及滑模控制,并将其应用于四旋翼的位置和姿态控制.上述两种非线性控制算法的设计及其稳定性分析都是以李雅普诺夫全局稳定性理论为基础.为了改善系统动态响应并避免超出执行机构的物理实现范围,在姿态控制子系统中,设计了分段可微信号作为安排"过渡过程",代替阶跃指令输入.仿真结果验证了反步法以及滑模控制在四旋翼上应用的可行性和有效性,最后通过对控制效果的比较、分析,总结两者各自的特点.  相似文献   

7.
针对非线性自抗扰控制的控制参数多且不能自整定的缺陷,为进一步提高控制的有效性和精度,在结合四旋翼无人机自身特性的基础上,本文提出一种附加惯性项人群搜索算法与自抗扰控制结合的姿态控制算法。对搜索步长和方向的惯性系数的选取方法进行修改,来实现四旋翼无人机在受干扰情况下飞行过程的姿态控制。仿真结果分析表明:与人群搜索算法优化自抗扰控制和自抗扰控制相比,该方法提高了控制系统的动态响应、抗扰性和鲁棒性,从而对于提高四旋翼无人机的姿态控制具有良好的参考价值。  相似文献   

8.
针对目标跟踪估计算法中,利用传感器离散观测建模并估计目标连续状态,进行导航解算时滤波精度低,及传统四元数扩展卡尔曼滤波算法无法满足目标姿态测量精度要求等问题,文中提出一种基于模糊逻辑四元数的平方根UKF姿态估计算法.该算法将四元数作为模糊逻辑UKF滤波器状态,应用测量的角速率完成滤波器的时间更新及量测更新,采用模糊逻辑的平方根协方差形式作为更新参数,既降低了算法的计算量和复杂度,又保证了数值的稳定性.文中还以近地卫星为例,在Matlab和C++软件上进行了仿真实验.实验结果表明:文中所提算法可保证对机器人和特征的姿态控制估计精度;可对目标实时跟踪定位并进行量测更新,抑制了姿态误差发散问题.  相似文献   

9.
获得准确的姿态角对于无人机的控制来说是十分重要的.考虑到平方根容积卡尔曼滤波算法(square-root cubature Kalman filter,SCKF),既能够克服扩展卡尔曼滤波(EKF)方法因线性化带来的误差,具有更好的非线性滤波功能,又在传统容积卡尔曼滤波方法中加入了平方根技术,从而能够有效提高数值计算的稳定性,并降低了算法的复杂度.该文将SCKF算法应用于4旋翼无人机的姿态估计中,提出了一种新的4旋翼无人机的姿态估计方法,并进行了仿真实验.实验结果表明:该方法相比传统的EKF方法滤波精度更高,相比较传统的容积卡尔曼滤波(CKF)、无迹卡尔曼滤波(UKF)方法计算时间更短.  相似文献   

10.
王伟  马浩  孙长银 《科学技术与工程》2013,13(19):5513-5519
为解决微小型飞行器姿态控制系统成本高、控制性能不稳定等缺点,以自主研发的四旋翼飞行器为研究对象,提出采用廉价的角速率陀螺仪和加速度计,并结合姿态角模型,利用卡尔曼滤波器推测姿态角信息。考虑飞行器的建模误差以及飞行过程中存的外部干扰,为提高控制系统的鲁棒性,采用模型参考滑模控制理论(Model Reference Sliding Mode Control,MRSMC)设计姿态控制器。实验结果表明所设计的姿态控制系统具有良好的跟踪与鲁棒性能。  相似文献   

11.
The technology of attitude control for quadrotor unmanned aerial vehicles(UAVs) is one of the most important UAVs' research areas.In order to achieve a satisfactory operation in quadrotor UAVs having proportional integration differential(PID) controllers,it is necessary to appropriately adjust the controller coefficients which are dependent on dynamic parameters of the quadrotor UAV and any changes in parameters and conditions could affect desired performance of the controller.In this paper,combining with PID control and fuzzy logic control,a kind of fuzzy self-adaptive PID control algorithm for attitude stabilization of the quadrotor UAV was put forward.Firstly,the nonlinear model of six degrees of freedom(6-DOF) for quadrotor UAV is established.Secondly,for obtaining the attitude of quadrotor,attitude data fusion using complementary filtering is applied to improving the measurement accuracy and dynamic performance.Finally,the attitude stabilization control simulation model of the quadrotor UAV is build,and the self-adaptive fuzzy parameter tuning rules for PID attitude controller are given,so as to realize the online self-tuning of the controller parameters.Simulation results show that comparing with the conventional PID controller,this attitude control algorithm of fuzzy self-adaptive PID has a better dynamic response performance.  相似文献   

12.
捷联惯性导航系统是新型航位推算系统,在惯导系统执行工作任务之前需要进行初始对准,以保证系统的正常运行。对捷联式惯导系统,初始对准就是确定初始时刻的姿态阵,利用惯性元件的输出信息,选用合适的滤波方法,将计算的导航坐标系与真实导航坐标系的失准角估计出来,来修正姿态矩阵,使计算坐标系与真实坐标系尽可能重合。在实际的导航系统中,状态方程和量测方程通常都是非线性的,对于非线性特性,传统的解决方法是利用EKF滤波算法,但它只适用于弱非线性模型的估计,系统的非线性越强,引起的估计误差就越大,甚至会引起滤波发散。为此提出两种滤波算法UKF与UPF,并将两者进行了仿真对比,结果表明UPF算法比UKF算法收敛速度更快,估计精度更高。  相似文献   

13.
针对多传感器融合姿态解算精度不高的问题,本文提出一种改进的卡尔曼滤波算法,即高阶线性互补滤波与扩展卡尔曼滤波(Extended Kalman Filter,EKF)相结合的融合算法。该数据的融合是基于加速度计、陀螺仪传感器频率特性和姿态角的微分方程建立的系统模型,将互补滤波的姿态角数据作为该系统模型的观测值,利用EKF算法对加速度计、陀螺仪、磁力计进行数据融合。高阶的互补滤波和EKF的融合算法能够有效的解决陀螺方向的估计偏差,为了证明该算法的可行性,用搭载IMU(InertialSmeasurementSunit)模块的四旋翼飞行器进行了动态和静态的实验,分析对比了最新导航算法、经典卡滤波算法和该融合算法滤波的效果。实验结果表明:本文提出的高阶无源线性互补滤波和EKF相结合的融合算法,无论在静态还是动态的实时性情况下,都能很明显的去除噪声和抑制姿态角的漂移,且提高了姿态角的精度。  相似文献   

14.
池文浩  高强  吉月辉 《科学技术与工程》2020,20(31):12890-12896
为了提高四旋翼无人机编队的自适应能力,通过自适应动态规划(Adaptive Dynamic Programming)方法研究四旋翼无人机编队分布式最优协调控制问题。将该算法引入到分布式协调控制器的设计中,既避免了冗余数据的传输,又使各无人机的性能函数最小化。基于模糊双曲模型的评价神经网络(Critic Neural Network) 逼近值函数,以实现控制策略的设计。闭环系统稳定性证明权值估计误差和局部邻域协调误差是一致最终有界的。最后,进行了有向切换通信拓扑下的四旋翼编队仿真实例,结果表明了该算法的有效性。  相似文献   

15.
依据实际污染状况建立了汾河太原城区段水污染控制系统规划模型,并将遗传算法作为规划问题的研究手段,使研究方法系统化。  相似文献   

16.
为实现六自由度Steward动感平台的姿态控制,实时模拟驾驶舱的运动姿态,选择Washout Filte的滤波方法作为体感模拟算法,推导Washout Filter的高通、低通滤波器的传递函数转换为差分方程的算法及纵向加速度倾斜策略、俯仰策略等,并用实例验证了算法的正确性.  相似文献   

17.
图像融合结合图像处理、信号处理、计算机和人工智能等相关技术.通过对多源图像数据信息的提取合成,从而获得同一场景目标较为准确全面的图像描述.神经网络具有强大的非线性映射逼近能力,将神经网络用来进行滤波融合,避免了传统滤波图像变模糊问题.通过小波神经网络自适应动量快速学习算法进行图像滤波融合,能从根本上避免局部最优,且加快收敛速度,具有很强的学习和泛化能力,也避免了网络结构盲目设计.仿真实验表明,用本方法实现的融合图像更加符合人的视觉特性.  相似文献   

18.
信号通路模型参数优化的非线性滤波方法   总被引:1,自引:0,他引:1  
提出采用非线性滤波方法--平方根UKF估计信号通路模型的未知参数,利用协方差平方根代替协方差参加递推运算,保证了滤波算法的数值稳定性.以肿瘤坏死因子诱导的核转录因子κB信号转导网络为例,利用平方根UKF对系统模型的未知参数进行辨识.仿真结果表明,该非线性滤波方法能够从噪声数据中提取有效信号,提高了参数估计的精度,为解决复杂信号通路参数辨识中的不确定性问题提供了可靠的方法.  相似文献   

19.
针对受轨道控制推力影响及存在执行器故障的挠性卫星,提出了一种基于自适应滑模的姿态容错控制及挠性振动抑制方法.该容错控制方法不需要故障信息,而是基于滑模控制原理,利用自适应算法能够对故障系统中的不确定参数信息实现有效估计,并且在保证姿态稳定的同时,对来自环境和系统内部的扰动及转动惯量的不确定性具有良好的鲁棒性,从而提高了容错控制器的性能.进一步在姿态稳定的基础上,利用精确鲁棒微分器理论,针对挠性模态中的非线性项和扰动项设计了非线性状态观测器,并结合自适应控制和滑模控制方法实现了对挠性振动的有效抑制.最后,在反作用飞轮冗余配置的前提下,对轨道调控期间具有执行器故障的卫星姿态控制系统进行了仿真.结果表明,该方法有效正确.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号