首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major route of protein translocation in bacteria is the so-called general secretion pathway (Sec-pathway). This route has been extensively studied in Escherichia coli and other bacteria. The movement of preproteins across the cytoplasmic membrane is mediated by a multimeric membrane protein complex called translocase. The core of the translocase consists of a proteinaceous channel formed by an oligomeric assembly of the heterotrimeric membrane protein complex SecYEG and the peripheral adenosine triphosphatase (ATPase) SecA as molecular motor. Many secretory proteins utilize the molecular chaperone SecB for targeting and stabilization of the unfolded state prior to translocation, while most nascent inner membrane proteins are targeted to the translocase by the signal recognition particle and its membrane receptor. Translocation is driven by ATP hydrolysis and the proton motive force. In the last decade, genetic and biochemical studies have provided detailed insights into the mechanism of preprotein translocation. Recent crystallographic studies on SecA, SecB and the SecYEG complex now provide knowledge about the structural features of the translocation process. Here, we will discuss the mechanistic and structural basis of the translocation of proteins across and the integration of membrane proteins into the cytoplasmic membrane.Received 10 January 2003; received after revision 2 April 2003; accepted 4 April 2003  相似文献   

2.
All cells must traffic proteins into and across their membranes. In bacteria, several pathways have evolved to enable protein transfer across the inner membrane, the periplasm, and the outer membrane. The major route of protein translocation in and across the cytoplasmic membrane is the general secretion pathway (Sec-pathway). The biogenesis of membrane proteins not only requires protein translocation but also coordinated targeting to the membrane beforehand and folding and assembly into their protein complexes afterwards to function properly in the cell. All these processes are responsible for the biogenesis of membrane proteins that mediate essential functions of the cell such as selective transport, energy conversion, cell division, extracellular signal sensing, and motility. This review will highlight the most recent developments on the structure and function of bacterial membrane proteins, focusing on the journey that integral membrane proteins take to find their final destination in the inner membrane.  相似文献   

3.
The ATP-binding cassette family is one of the largest groupings of membrane proteins, moving allocrites across lipid membranes, using energy from ATP. In bacteria, they reside in the inner membrane and are involved in both uptake and export. In eukaryotes, these transporters reside in the cell’s internal membranes as well as in the plasma membrane and are unidirectional—out of the cytoplasm. The range of substances that these proteins can transport is huge, which makes them interesting for structure–function studies. Moreover, their abundance in nature has made them targets for structural proteomics consortia. There are eight independent structures for ATP-binding cassette transporters, making this one of the best characterised membrane protein families. Our understanding of the mechanism of transport across membranes and membrane protein structure in general has been enhanced by recent developments for this family.  相似文献   

4.
Chemotaxis is the directed motility by means of which microbes sense chemical cues and relocate towards more favorable environments. Methyl-accepting chemotaxis proteins (MCPs) are the most common receptors in bacteria and archaea. They are arranged as trimers of dimers that, in turn, form hexagonal arrays in the cytoplasmic membrane or in the cytoplasm. Several different classes of MCPs have been identified according to their ligand binding region and membrane topology. MCPs have been further classified based on the length and sequence conservation of their cytoplasmic domains. Clusters of membrane-embedded MCPs often localize to the poles of the cell, whereas cytoplasmic MCPs can be targeted to the poles or distributed throughout the cell body. MCPs play an important role in cell survival, pathogenesis, and biodegradation. Bacterial adaptation to diverse environmental conditions promotes diversity among the MCPs. This review summarizes structure, classification, and structure–activity relationship of the known MCP receptors, with a brief overview of the signal transduction mechanisms in bacteria and archaea.  相似文献   

5.
Retinal proteins function as photoreceptors and ion pumps. Xanthorhodopsin of Salinibacter ruber is a recent addition to this diverse family. Its novel and distinctive feature is a second chromophore, a carotenoid, which serves as light-harvesting antenna. Here we discuss the properties of this carotenoid/retinal complex most relevant to its function (such as the specific binding site controlled by the retinal) and its relationship to other retinal proteins (bacteriorhodopsin, archaerhodopsin, proteorhodopsin and retinal photoreceptors of archaea and eukaryotes). Antenna addition to a retinal protein has not been observed among the archaea and emerged in bacteria apparently in response to environmental conditions where light-harvesting becomes a limiting factor in retinal protein functioning. Received 2 April 2007; received after revision 14 May 2007; accepted 16 May 2007  相似文献   

6.
Membrane-embedded β-barrel proteins span the membrane via multiple amphipathic β-strands arranged in a cylindrical shape. These proteins are found in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. This situation is thought to reflect the evolutionary origin of mitochondria and chloroplasts from Gram-negative bacterial endosymbionts. β-barrel proteins fulfil a variety of functions; among them are pore-forming proteins that allow the flux of metabolites across the membrane by passive diffusion, active transporters of siderophores, enzymes, structural proteins, and proteins that mediate protein translocation across or insertion into membranes. The biogenesis process of these proteins combines evolutionary conservation of the central elements with some noticeable differences in signals and machineries. This review summarizes our current knowledge of the functions and biogenesis of this special family of proteins.  相似文献   

7.
Proteins routed to the secretory pathway start their journey by being transported across biological membranes, such as the endoplasmic reticulum. The essential nature of this protein translocation process has led to the evolution of several factors that specifically target the translocon and block translocation. In this review, various translocation pathways are discussed together with known inhibitors of translocation. Properties of signal peptide-specific systems are highlighted for the development of new therapeutic and antimicrobial applications, as compounds can target signal peptides from either host cells or pathogens and thereby selectively prevent translocation of those specific proteins. Broad inhibition of translocation is also an interesting target for the development of new anticancer drugs because cancer cells heavily depend on efficient protein translocation into the endoplasmic reticulum to support their fast growth.  相似文献   

8.
Crossing biological barriers represents a major limitation for clinical applications of biomolecules such as nucleic acids, peptides or proteins. Cell penetrating peptides (CPP), also named protein transduction domains, comprise short and usually basic amino acids-rich peptides originating from proteins able to cross biological barriers, such as the viral Tat protein, or are rationally designed. They have emerged as a new class of non-viral vectors allowing the delivery of various biomolecules across biological barriers from low molecular weight drugs to nanosized particles. Encouraging data with CPP-conjugated oligonucleotides have been obtained both in vitro and in vivo in animal models of diseases such as Duchenne muscular dystrophy. Whether CPP-cargo conjugates enter cells by direct translocation across the plasma membrane or by endocytosis remains controversial. In many instances, however, endosomal escape appears as a major limitation of this new delivery strategy.  相似文献   

9.
Cytosol-synthesized preproteins destined for the mitochondria are transported across the outer membrane by the translocase of the mitochondrial outer membrane (TOM complex). This dynamic transport machinery can be divided into receptors that recognize preprotein targeting signals and components of the general import pore complex that mediate preprotein transport across the outer membrane. This review focuses on recent studies dealing with the central questions regarding the pore-forming subunits, and architecture and gating of the translocation channel of the outer membrane.  相似文献   

10.
Our level of understanding of peroxisome biogenesis in comparison with other cellular organelles is rudimentary, yet the fragments of information available indicate that the targeting and import of peroxisomal proteins occur by fundamentally different mechanisms. Genetic studies have identified a number of genes required for peroxisome assembly, but in most cases the functions of the gene products remain unknown. In vitro protein translocation systems have played a prominent role in unravelling the biochemistry of protein translocation into other organelles. This review considers some of the requirements for establishing a bona fide peroxisomal import assay and discusses the findings which have emerged as a result of using such experimental systems.  相似文献   

11.
Peroxisomes are vital intracellular organelles which house enzymes involved in a variety of metabolic pathways. The large number of human disorders associated with flawed peroxisome biogenesis emphasizes the importance of protein targeting to, and translocation across, the peroxisomal membrane. This brief review will summarize some of the emerging themes of peroxisomal protein import, specifically addressing the targeting signals possessed by constituent proteins, as well as the cytosolic, membrane and luminal components of the import machinery. Although a detailed understanding of the molecular mechanisms of peroxisomal protein import is not yet available, remarkable progress has been made in the field in recent years. An overview of these advances will be presented.  相似文献   

12.
Spermine is present in many organisms including animals, plants, some fungi, some archaea, and some bacteria. It is synthesized by spermine synthase, a highly specific aminopropyltransferase. This review describes spermine synthase structure, genetics, and function. Structural and biochemical studies reveal that human spermine synthase is an obligate dimer. Each monomer contains a C-terminal domain where the active site is located, a central linking domain that also forms the lid of the catalytic domain, and an N-terminal domain that is structurally very similar to S-adenosylmethionine decarboxylase. Gyro mice, which have an X-chromosomal deletion including the spermine synthase (SMS) gene, lack all spermine and have a greatly reduced size, sterility, deafness, neurological abnormalities, and a tendency to sudden death. Mutations in the human SMS lead to a rise in spermidine and reduction of spermine causing Snyder-Robinson syndrome, an X-linked recessive condition characterized by mental retardation, skeletal defects, hypotonia, and movement disorders.  相似文献   

13.
Since their initial discovery, 30 years ago, antimicrobial peptides (AMPs) have been intensely investigated as a possible solution to the increasing problem of drug-resistant bacteria. The interaction of antimicrobial peptides with the cellular membrane of bacteria is the key step of their mechanism of action. Fluorescence spectroscopy can provide several structural details on peptide–membrane systems, such as partition free energy, aggregation state, peptide position and orientation in the bilayer, and the effects of the peptides on the membrane order. However, these “low-resolution” structural data are hardly sufficient to define the structural requirements for the pore formation process. Molecular dynamics simulations, on the other hand, provide atomic-level information on the structure and dynamics of the peptide–membrane system, but they need to be validated experimentally. In this review we summarize the information that can be obtained by both approaches, highlighting their versatility and complementarity, suggesting that their synergistic application could lead to a new level of insight into the mechanism of membrane destabilization by AMPs.  相似文献   

14.
The protein kinase C (PKC) family of isoenzymes has been shown to regulate a variety of cellular processes, including receptor desensitization and internalization, and this has sparked interest in further delineation of the roles of specific isoforms of PKC in membrane trafficking and endocytosis. Recent studies have identified a novel translocation of PKC to a juxtanuclear compartment, the pericentrion, which is distinct from the Golgi complex but epicentered on the centrosome. Sustained activation of PKC (longer than 30 min) also results in sequestration of plasma membrane lipids and proteins to the same compartment, demonstrating a global effect on endocytic trafficking. This review summarizes these studies, particularly focusing on the characterization of the pericentrion as a distinct PKC-dependent subset of recycling endosomes. We also discuss emerging insights into a role for PKC as a central hub in regulating vesicular transport pathways throughout the cell, with implications for a wide range of pathobiologic processes, e.g. diabetes and abnormal neurotransmission or receptor desensitization. Received 11 August 2006; received after revision 20 September 2006; accepted 7 November 2006  相似文献   

15.
Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.  相似文献   

16.
Colicins are plasmid-encoded protein antibiotics which kill bacteria closely related to the producing strain (generally Escherichia coli). The study of the function of colicins has revealed many features which reflect common targeting and translocation mechanisms with bacteriophages and toxins. Like many toxins, colicins are composed of structural domains specialized in one of the different steps of the activity, targeting, translocation and killing. The major group comprises those colicins which permeabilize the cytoplasmic membrane, thereby destroying the cell's membrane potential. These colicins form well-defined voltage-gated ion channels in artificial membranes. The scope of this review is to describe some of the more recent findings concerning the structure and mode of action of pore-forming colicins with a special attention to models of membrane insertion and pore structure based on the recently determined three-dimensional structure of the pore-forming domain of colicin A.  相似文献   

17.
Type II restriction endonucleases are components of restriction modification systems that protect bacteria and archaea against invading foreign DNA. Most are homodimeric or tetrameric enzymes that cleave DNA at defined sites of 4–8 bp in length and require Mg2+ ions for catalysis. They differ in the details of the recognition process and the mode of cleavage, indicators that these enzymes are more diverse than originally thought. Still, most of them have a similar structural core and seem to share a common mechanism of DNA cleavage, suggesting that they evolved from a common ancestor. Only a few restriction endonucleases discovered thus far do not belong to the PD...D/ExK family of enzymes, but rather have active sites typical of other endonuclease families. The present review deals with new developments in the field of Type II restriction endonucleases. One of the more interesting aspects is the increasing awareness of the diversity of Type II restriction enzymes. Nevertheless, structural studies summarized herein deal with the more common subtypes. A major emphasis of this review will be on target site location and the mechanism of catalysis, two problems currently being addressed in the literature.Received 15 November 2004; accepted 9 December 2004  相似文献   

18.
Diversity and roles of (t)RNA ligases   总被引:1,自引:1,他引:0  
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.  相似文献   

19.
20.
During the last decade, RNA molecules with regulatory functions on gene expression have benefited from a renewed interest. In bacteria, recent high throughput computational and experimental approaches have led to the discovery that 10–20% of all genes code for RNAs with critical regulatory roles in metabolic, physiological and pathogenic processes. The trans-acting RNAs comprise the noncoding RNAs, RNAs with a short open reading frame and antisense RNAs. Many of these RNAs act through binding to their target mRNAs while others modulate protein activity or target DNA. The cis-acting RNAs include regulatory regions of mRNAs that can respond to various signals. These RNAs often provide the missing link between sensing changing conditions in the environment and fine-tuning the subsequent biological responses. Information on their various functions and modes of action has been well documented for gram-negative bacteria. Here, we summarize the current knowledge of regulatory RNAs in gram-positive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号