首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis regulation in the mammary gland   总被引:14,自引:0,他引:14  
Epithelial apoptosis has a key role in the development and function of the mammary gland. It is involved with the formation of ducts during puberty and is required to remove excess epithelial cells after lactation so that the gland can be prepared for future pregnancies. Deregulated apoptosis contributes to malignant progression in the genesis of breast cancer. Since epithelial cell apoptosis in the lactating mammary gland can be synchronised by forced weaning, it has been possible to undertake biochemical analysis of the pathways involved. Together with the targeted overexpression or deletion of candidate genes, these approaches have provided a unique insight into the complex mechanisms of apoptosis regulation in vivo. This review explores what is currently known about the triggers for apoptosis in the normal mammary gland, and how they link with the intrinsic apoptotic machinery.Received 23 September 2003; received after revision 13 February 2004; accepted 3 March 2004  相似文献   

2.
Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin–proteasome system. In this review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environment of the cell.  相似文献   

3.
4.
The intestinal epithelium forms a highly active functional interface between the relatively sterile internal body surfaces and the enormously complex and diverse microbiota that are contained within the lumen. Genetic models that allow for manipulation of genes specifically in the intestinal epithelium have provided an avenue to understand the diverse set of pathways whereby intestinal epithelial cells (IECs) direct the immune state of the mucosa associated with homeostasis versus either productive or non-productive inflammation as occurs during enteropathogen invasion or inflammatory bowel disease (IBD), respectively. These pathways include the unfolded protein response (UPR) induced by stress in the endoplasmic reticulum (ER), autophagy, a self-cannibalistic pathway important for intracellular bacterial killing and proper Paneth cell function as well as the interrelated functions of NOD2/NF-κB signaling which also regulate autophagy induction. Multiple genes controlling these IEC pathways have been shown to be genetic risk factors for human IBD. This highlights the importance of these pathways not only for proper IEC function but also suggesting that IECs may be one of the cellular originators of organ-specific and systemic inflammation as in IBD.  相似文献   

5.
Autophagy is a highly regulated process in eukaryotes to maintain homeostasis and manage stress responses. Understanding the regulatory mechanisms and key players involved in autophagy will provide critical insights into disease-related pathogenesis and potential clinical treatments. In this review, we describe the hallmark events involved in autophagy, from its initiation, to the final destruction of engulfed targets. Furthermore, based on structural and biochemical data, we evaluate the roles of key players in these processes and provide rationale as to how they control autophagic events in a highly ordered manner.  相似文献   

6.
Cell death is a major determinant of inflammatory disease severity. Whether cells live or die during inflammation largely depends on the relative success of the pro-survival process of autophagy versus the pro-death process of apoptosis. These processes interact and influence each other during inflammation and there is a checkpoint at which cells irrevocably commit to either one pathway or another. This review will discuss the concept of the autophagy/apoptosis checkpoint and its importance during inflammation, the mechanisms of inflammation leading up to the checkpoint, and how the checkpoint is regulated. Understanding these concepts is important since manipulation of the autophagy/apoptosis checkpoint represents a novel opportunity for treatment of inflammatory diseases caused by too much or too little cell death.  相似文献   

7.
Loss of functional cardiomyocytes is a major underlying mechanism for myocardial remodeling and heart diseases, due to the limited regenerative capacity of adult myocardium. Apoptosis, programmed necrosis, and autophagy contribute to loss of cardiac myocytes that control the balance of cardiac cell death and cell survival through multiple intricate signaling pathways. In recent years, non-coding RNAs (ncRNAs) have received much attention to uncover their roles in cell death of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, and heart failure. In addition, based on the view that mitochondrial morphology is linked to three types of cell death, ncRNAs are able to regulate mitochondrial fission/fusion of cardiomyocytes by targeting genes involved in cell death pathways. This review focuses on recent progress regarding the complex relationship between apoptosis/necrosis/autophagy and ncRNAs in the context of myocardial cell death in response to stress. This review also provides insight into the treatment for heart diseases that will guide novel therapies in the future.  相似文献   

8.
Ceramide has been reported to induce typical apoptotic changes in nuclei incubated in a cell-free system, and that the addition of ceramide bypasses the requirement for mitochondria. Here, we explore the possible pathways by which ceramide induces apoptosis either in intact cells or in a cell-free system which we have developed. We found that in the cell-free system, C2-ceramide is not able to induce apoptosis in nuclei whereas cytochrome c does, but it is able to induce HeLa cells to undergo apoptosis. Ceramide is also not able to induce apoptosis when added into the cell-free system together with purified mitochondria. Further investigation showed that C2-ceramide at certain concentrations greatly increases nuclear apoptosis caused by cytochrome c in the cell-free system. From these results we conclude that the induction of apoptosis by ceramide may require intact cells in which some unknown signal transduction pathways are involved.  相似文献   

9.
The suggestion has been made that polyamines may be involved in the control of cell death, since exceedingly high or low levels induce apoptosis in different cell systems. For a deeper insight into the relationship between apoptosis and polyamine metabolism, we investigated in vitro the effect on rat thymocytes of mitoguazone (MGBG, which inhibits S-adenosylmethionine decarboxylase, i.e. a key enzyme in the polyamine biosynthetic pathway). Thymocytes were selected as an especially suitable model system, since they undergo spontaneous apoptosis in vivo and can be easily induced to apoptose in vitro by etoposide, used here as an apoptogenic agent. MGBG protected thymocytes from both spontaneous and drug-induced apoptosis, and this protective effect was associated with a decrease in polyamine oxidase activity and total polyamine levels.Received 7 July 2004; received after revision 2 September 2004; accepted 9 September 2004  相似文献   

10.
Degradation of dysfunctional intracellular components in the lysosome system can occur through three different pathways, i.e., macroautophagy, microautophagy and chaperone-mediated autophagy (CMA). In this review, we focus on CMA, a type of autophagy distinct from the other two autophagic pathways owing to its selectivity, saturability and competitivity by which a subset of long-lived cytosolic soluble proteins are directly delivered into the lysosomal lumen via specific receptors. CMA participates in quality control to maintain normal cell functions by clearing “old” proteins and provides energy to cells under nutritional stress. Deregulation of CMA has recently been shown to underlie some diseases, especially neurodegenerative disorders for which the decline with age in the activity of CMA may become a major aggravating factor. Therefore, targeting aberrant alteration in CMA under pathological conditions could serve as a potential therapeutic strategy for treating related diseases.  相似文献   

11.
12.
The classical view that endogenous antigens are processed by the proteasome and loaded on MHC class I molecules in the endoplasmic reticulum, while exogenous antigens taken up by endocytosis or phagocytosis are degraded and loaded on MHC class II in lysosome-derived organelles, has evolved along with the improvement of our understanding of the cell biology of antigen-presenting cells. In recent years, evidence for alternative presentation pathways has emerged. Exogenous antigens can be processed by the proteasome and loaded on MHC class I through a pathway called cross-presentation. Moreover, endogenous antigens can be targeted to lytic organelles for presentation on MHC class II through autophagy, a highly conserved cellular process of self-eating. Recent evidence indicates that the vacuolar degradation of endogenous antigens is also beneficial for presentation on MHC class I molecules. This review focuses on how various forms of autophagy participate to presentation of these antigens on MHC class I.  相似文献   

13.
Cytokines and growth factors play a crucial role in the maintenance of haematopoietic homeostasis. They transduce signals that regulate the competing commitments of haematopoietic stem cells, quiescence or proliferation, retention of stem cell pluripotency or differentiation, and survival or demise. When the balance between these commitments and the requirements of the organisms is disturbed, particularly when it favours survival and proliferation, cancer may result. Cell death provoked by loss of growth factor signalling is regulated by the Bcl-2 family of apoptosis regulators, and thus survival messages transduced by growth factors must regulate the activity of these proteins. Many aspects of direct interactions between cytokine signalling and regulation of apoptosis remain elusive. In this review, we explore the mechanisms by which cytokines, in particular Interleukin-3 and granulocyte–macrophage colony-stimulating factor, promote cell survival and suppress apoptosis as models of how cytokine signalling and apoptotic pathways intersect.  相似文献   

14.
DNA damage repair and transcription   总被引:2,自引:0,他引:2  
  相似文献   

15.
Neurons are highly specialised cells with a large bioenergetic demand, and so require a healthy mitochondrial network to function effectively. This network is compromised in many neurological disorders, in which damaged mitochondria accumulate. Dysfunctional mitochondria can be removed via an organelle-specific autophagic pathway, a process known as mitophagy. The canonical mitophagy pathway is dependent on the actions of PINK1 (PTEN-induced putative kinase 1) and Parkin and has been well studied in immortalised cells and cultured neurons. However, evidence for a role of this mitophagy pathway in the brain is still limited, and studies suggest that there may be important differences in how neurons respond to mitochondrial damage in vitro and in vivo. Here, we first describe the evidence for a functional PINK1/Parkin mitophagy pathway in neurons, and review how this pathway is affected in disease models. We then critically evaluate the literature by comparing findings from in vitro models and more recent in vivo studies in flies and mice. The emerging picture implicates that alternative mitophagy pathways operate in neurons in vivo. New mouse models that employ fluorescent biosensors to monitor mitophagy in vivo will be instrumental to understand the relative role of the different clearance pathways in the brain under physiological and pathological conditions.  相似文献   

16.
Autophagy is a degradative mechanism mainly involved in the recycling and turnover of cytoplasmic constituents from eukaryotic cells. Over the last years, yeast genetic screens have considerably increased our knowledge about the molecular mechanisms of autophagy, and a number of genes involved in fundamental steps of the autophagic pathway have been identified. Most of these autophagy genes are present in higher eukaryotes indicating that this process has been evolutionarily conserved. In yeast, autophagy is mainly involved in adaptation to starvation, but in multicellular organisms this route has emerged as a multifunctional pathway involved in a variety of additional processes such as programmed cell death, removal of damaged organelles and development of different tissue-specific functions. Furthermore, autophagy is associated with a growing number of pathological conditions, including cancer, myopathies and neurodegenerative disorders. The physiological and pathological roles of autophagy, as well as the molecular mechanisms underlying this multifunctional pathway, are discussed in this review.Received 12 January 2004; received after revision 29 January 2004; accepted 4 February 2004  相似文献   

17.
Mechanisms controlling cellular suicide: role of Bcl-2 and caspases   总被引:7,自引:0,他引:7  
Apoptosis is an essential and highly conserved mode of cell death that is important for normal development, host defense and suppression of oncogenesis. Faulty regulation of apoptosis has been implicated in degenerative conditions, vascular diseases, AIDS and cancer. Among the numerous proteins and genes involved, members of the Bcl-2 family play a central role to inhibit or promote apoptosis. In this article, we present up-to-date information and recent discoveries regarding biochemical functions of Bcl-2 family proteins, positive and negative interactions between these proteins, and their modification and regulation by either proteolytic cleavage or by cytosolic kinases, such as Raf-1 and stress-activated protein kinases. We have critically reviewed the functional role of caspases and the consequences of cleaving key substrates, including lamins, poly(ADP ribose) polymerase and the Rb protein. In addition, we have presented the latest Fas-induced signalling mechanism as a model for receptor-linked caspase regulation. Finally, the structural and functional interactions of Ced-4 and its partial mam malian homologue, apoptosis protease activating factor-1 (Apaf-1), are presented in a model which includes other Apafs. This model culminates in a caspase/Apaf regulatory cascade to activate the executioners of programmed cell death following cytochrome c release from the mitochondria of mammalian cells. The importance of these pathways in the treatment of disease is highly dependent on further characterization of genes and other regulatory molecules in mammals. Received 18 February 1998; accepted February 1998  相似文献   

18.
Diabetic kidney disease, a leading cause of end-stage renal disease, has become a serious public health problem worldwide and lacks effective therapies. Autophagy is a highly conserved lysosomal degradation pathway that removes protein aggregates and damaged organelles to maintain cellular homeostasis. As important stress-responsive machinery, autophagy is involved in the pathogenesis of various diseases. Emerging evidence has suggested that dysregulated autophagy may contribute to both glomerular and tubulointerstitial pathologies in kidneys under diabetic conditions. This review summarizes the recent findings regarding the role of autophagy in the pathogenesis of diabetic kidney disease and highlights the regulation of autophagy by the nutrient-sensing pathways and intracellular stress signaling in this disease. The advances in our understanding of autophagy in diabetic kidney disease will facilitate the discovery of a new therapeutic target for the prevention and treatment of this life-threatening diabetes complication.  相似文献   

19.
G418 is used extensively in transfection experiments to select eukaryotic cells that have acquired neomycin resistance genes, but the mechanism is still elusive. To investigate this, we treated normal rat kidney cells with G418 for 3 days and found that the cells presented typical apoptotic features such as cell shrinkage, nuclear fragmentation, and caspase-3 activation. However, there was no low-molecular DNA ladder. The pan caspase inhibitor z-VAD-fmk completely inhibited this type of apoptosis, suggesting a caspase-dependent mechanism. Caspase cascades in apoptosis induced by G418 were initiated by at least two pathways: the release of cytochrome c from mitochondria, which was observed under confocal microscopy, and endoplasmic reticulum stress, demonstrated by the increase in Ca2+ concentration and the cleavage of m-calpain and procaspase-12. Both pathways activated caspase-9. Inhibition of caspase-9 activity by z-LEHD-fmk prevented most of the cells from apoptosis, and E-64d, an inhibitor of calpain accentuated this block. The cleavage of casapse-9 and caspase-12 was blocked only by simultaneous application of z-VAD-fmk and E-64d, but not by either alone. E-64d did not prevent the release of cytochrome c. These results indicated that these two pathways were independent of each other. Received 1 April 2004; received after revision 21 April 2004; accepted 26 May 2004  相似文献   

20.
The maintenance of mucosal barrier equilibrium in the intestine requires a delicate and dynamic balance between enterocyte loss by apoptosis and the generation of new cells by proliferation from stem cell precursors at the base of the intestinal crypts. When the balance shifts towards either excessive or insufficient apoptosis, a broad range of gastrointestinal diseases can manifest. Recent work from a variety of laboratories has provided evidence in support of a role for receptors of the innate immune system, including Toll-like receptors 2, 4, and 9 as well as the intracellular pathogen recognition receptor NOD2/CARD15, in the initiation of enterocyte apoptosis. The subsequent induction of enterocyte apoptosis in response to the activation of these innate immune receptors plays a key role in the development of various intestinal diseases, including necrotizing enterocolitis, Crohn’s disease, ulcerative colitis, and intestinal cancer. This review will detail the regulatory pathways that govern enterocyte apoptosis, and will explore the role of the innate immune system in the induction of enterocyte apoptosis in gastrointestinal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号