首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
2.
PTEN prevents tumor genesis by antagonizing the PI3 kinase/Akt pathway through D3 site phosphatase activity toward PI(3,4)P2 and PI(3,4,5)P3. The structural determinants of this important specificity remain unknown. Interestingly, PTEN shares remarkable homology to voltage-sensitive phosphatases (VSPs) that dephosphorylate D5 and D3 sites of PI(4,5)P2, PI(3,4)P2, and PI(3,4,5)P3. Since the catalytic center of PTEN and VSPs differ markedly only in TI/gating loop and active site motif, we wondered whether these differences explained the variation of their substrate specificity. Therefore, we introduced mutations into PTEN to mimic corresponding sequences of VSPs and studied phosphatase activity in living cells utilizing engineered, voltage switchable PTENCiV, a Ci-VSP/PTEN chimera that retains D3 site activity of the native enzyme. Substrate specificity of this enzyme was analyzed with whole-cell patch clamp in combination with total internal reflection fluorescence microscopy and genetically encoded phosphoinositide sensors. In PTENCiV, mutating TI167/168 in the TI loop into the corresponding ET pair of VSPs induced VSP-like D5 phosphatase activity toward PI(3,4,5)P3, but not toward PI(4,5)P2. Combining TI/ET mutations with an A126G exchange in the active site removed major sequence variations between PTEN and VSPs and resulted in D5 activity toward PI(4,5)P2 and PI(3,4,5)P3 of PTENCiV. This PTEN mutant thus fully reproduced the substrate specificity of native VSPs. Importantly, the same combination of mutations also induced D5 activity toward PI(3,4,5)P3 in native PTEN demonstrating that the same residues determine the substrate specificity of the tumor suppressor in living cells. Reciprocal mutations in VSPs did not alter their substrate specificity, but reduced phosphatase activity. In summary, A126 in the active site and TI167/168 in the TI loop are essential determinants of PTEN’s substrate specificity, whereas additional features might contribute to the enzymatic activity of VSPs.  相似文献   

3.
4.
Site- and state-specific lysine methylation of histones is catalyzed by a family of proteins that contain the evolutionarily conserved SET domain and plays a fundamental role in epigenetic regulation of gene activation and silencing in all eukaryotes. The recently determined three-dimensional structures of the SET domains from chromosomal proteins reveal that the core SET domain structure contains a two-domain architecture, consisting of a conserved anti-parallel β-barrel and a structurally variable insert that surround a unusual knot-like structure that comprises the enzyme active site. These structures of the SET domains, either in the free state or when bound to cofactor S-adenosyl-L-homocysteine and/or histone peptide, mimicking an enzyme/cofactor/substrate complex, further yield the structural insights into the molecular basis of the substrate specificity, methylation multiplicity and the catalytic mechanism of histone lysine methylation. Received 10 June 2006; accepted 22 August 2006  相似文献   

5.
The A chain of thrombin is covalently linked to the catalytic B chain but is separate from any known epitope for substrate recognition. In this study we present the results of the Ala replacement of 12 charged residues controlling the stability of the A chain and its interaction with the B chain. Residues Arg4 and Glu8 play a significant role in substrate recognition, even though they are located > 20 A away from residues of the catalytic triad, the primary specificity pocket and the Na+ site. The R4A mutation causes significant perturbation of Na+ binding, fibrinogen clotting and PAR1 cleavage, but modest reduction of protein C activation in the presence of thrombomodulin. These findings challenge our current paradigm of thrombin structure-function relations focused exclusively on the properties of the catalytic B chain, and explain why certain naturally occurring mutations of the A chain cause serious bleeding.  相似文献   

6.
Class III adenylyl cyclases are the most abundant type of cyclic AMP-producing enzymes. The adjustment of the cellular levels of this second messenger is achieved by a variety of regulatory mechanisms which couple signals to adenylyl cyclase activity. Because of the divergent nature of stimuli which impinge on these enzymes, highly individualized class III adenylyl cyclases have evolved in metazoans, eukaryotic unicells and bacteria. Regulation usually exploits the dimeric structure of the catalyst, whose active centres form at the dimer interface. The fold of the catalytic domains and the basic catalytic mechanisms are similar in all class III adenylyl cyclases, and substrate binding generally closes the active site by an induced-fit mechanism. Regulatory inputs can result in dramatic rearrangements of the catalytic domains within the dimer, which often are based on rotational movements. Received 13 February 2006; received after revision 16 March 2006; accepted 20 April 2006  相似文献   

7.
The enzymatic catalysis of polymeric substrates such as proteins, polysaccharides or nucleic acids requires precise alignment between the enzyme and the substrate regions flanking the region occupying the active site. In the case of ribonucleases, enzyme-substrate binding may be directed by electrostatic interactions between the phosphate groups of the RNA molecule and basic amino acid residues on the enzyme. Specific interactions between the nitrogenated bases and particular amino acids in the active site or adjacent positions may also take place. The substrate-binding subsites of ribonuclease A have been characterized by structural and kinetic studies. In addition to the active site (p1 ), the role of other noncatalytic phosphate-binding subsites in the correct alignment of the polymeric substrate has been proposed. p2 and p0 have been described as phosphate-binding subsites that bind the phosphate group adjacent to the 3′ side and 5′ side, respectively, of the phosphate in the active site. In both cases, basic amino acids (Lys-7 and Arg-10 in p2 , and Lys-66 in p0 ) are involved in binding. However, these binding sites play different roles in the catalytic process of ribonuclease A. The electrostatic interactions in p2 are important both in catalysis and in the endonuclease activity of the enzyme, whilst the p0 electrostatic interaction contributes only to binding of the RNA.  相似文献   

8.
Structure and function of eukaryotic NAD(P)H:nitrate reductase   总被引:7,自引:0,他引:7  
Pyridine nucleotide-dependent nitrate reductases (NRs; EC 1.6.6.1–3) are molybdenum-containing enzymes found in eukaryotic organisms which assimilate nitrate. NR is a homodimer with an ∼100 kDa polypeptide which folds into stable domains housing each of the enzyme's redox cofactors—FAD, heme-Fe molybdopterin (Mo-MPT) and the electron donor NAD(P)H—and there is also a domain for the dimer interface. NR has two active sites: the nitrate-reducing Mo-containing active site and the pyridine nucleotide active site formed between the FAD and NAD(P)H domains. The major barriers to defining the mechanism of catalysis for NR are obtaining the detailed three-dimensional structures for oxidized and reduced enzyme and more in-depth analysis of electron transfer rates in holo-NR. Recombinant expression of holo-NR and its fragments, including site-directed mutagenesis of key acative site and domain interface residues, are expected to make large contributions to this effort to understand the catalytic mechanism of NR.  相似文献   

9.
D-Amino acid oxidase: new findings   总被引:14,自引:0,他引:14  
The most recent research on D-amino acid oxidases and D-amino acid metabolism has revealed new, intriguing properties of the flavoenzyme and enlighted novel biotechnological uses of this catalyst. Concerning the in vivo function of the enzyme, new findings on the physiological role of D-amino acid oxidase point to a detoxifying function of the enzyme in metabolizing exogenous D-amino acids in animals. A novel role in modulating the level of D-serine in brain has also been proposed for the enzyme. At the molecular level, site-directed mutagenesis studies on the pig kidney D-amino acid oxidase and, more recently, on the enzyme from the yeast Rhodotorula gracilis indicated that the few conserved residues of the active site do not play a role in acid-base catalysis but rather are involved in substrate interactions. The three-dimensional structure of the enzyme was recently determined from two different sources: at 2.5-3.0 A resolution for DAAO from pig kidney and at 1.2-1.8 A resolution for R. gracilis. The active site can be clearly depicted: the striking absence of essential residues acting in acid-base catalysis and the mode of substrate orientation into the active site, taken together with the results of free-energy correlation studies, clearly support a hydrid transfer type of mechanism in which the orbital steering between the substrate and the isoalloxazine atoms plays a crucial role during catalysis.  相似文献   

10.
What’s new in the renin-angiotensin system?   总被引:2,自引:0,他引:2  
Angiotensin-converting enzyme (ACE) is a zinc- and chloride-dependent metallopeptidase that plays a vital role in the metabolism of biologically active peptides. Until recently, much of the inhibitor design and mechanism of action of this ubiquitous enzyme was based on the structures of carboxypeptidase A and thermolysin. When compared to the recently solved structures of the testis isoform of ACE (tACE) and its Drosophila homologue (AnCE), carboxypeptidase A showed little structural homology outside of the active site, while thermolysin revealed significant but less marked overall similarity. The ellipsoid-shaped structure of tACE, which has a preponderance of -helices, is characterised by a core channel that has a constriction approximately 10 Å from its opening where the zinc-binding active site is located. Comparison of the native protein with the inhibitor-bound form (lisinopril-tACE) does not reveal any striking differences in the conformation of the inhibitor binding site, disfavouring an open and closed configuration. However, the inhibitor complex does provide insights into the network of hydrogen-bonding and ionic interactions in the active site as well as the mechanism of ACE substrate hydrolysis. The three-dimensional structure of ACE now paves the way for the rational design of a new generation of domain-selective ACE inhibitors.  相似文献   

11.
Type 2 phosphatidic acid phosphatases (PAP2s) can be either soluble or integral membrane enzymes. In bacteria, integral membrane PAP2s play major roles in the metabolisms of glycerophospholipids, undecaprenyl-phosphate (C55-P) lipid carrier and lipopolysaccharides. By in vivo functional experiments and biochemical characterization we show that the membrane PAP2 coded by the Bacillus subtilis yodM gene is the principal phosphatidylglycerol phosphate (PGP) phosphatase of B. subtilis. We also confirm that this enzyme, renamed bsPgpB, has a weaker activity on C55-PP. Moreover, we solved the crystal structure of bsPgpB at 2.25 Å resolution, with tungstate (a phosphate analog) in the active site. The structure reveals two lipid chains in the active site vicinity, allowing for PGP substrate modeling and molecular dynamic simulation. Site-directed mutagenesis confirmed the residues important for substrate specificity, providing a basis for predicting the lipids preferentially dephosphorylated by membrane PAP2s.  相似文献   

12.
Summary Butanedione in borate buffer irreversibly inactivates L-amino acid oxidase. L-Phenylalanine and L-methionine, which are good substrates for the enzyme, protect against inactivation but glycine, which is a very poor substrate, and D-phenylalanine, which is neither substrate nor inhibitor, do not provide significant protection. These results are consistent with the modification by butanedione of one or more arginine residues located in or near the catalytic site of L-amino acid oxidase. Acknowledgments. We thank Drs D. Porter and S. Johnson for advice and assistance; Ms D. Hurt for electrophoretic analyses of protein samples; NIH for grant No. AM-25247, and NSF for grant No. SP176-83182.  相似文献   

13.
Canonical protein inhibitors of serine proteases   总被引:8,自引:0,他引:8  
Serine proteases and their natural protein inhibitors are among the most intensively studied protein complexes. About 20 structurally diverse inhibitor families have been identified, comprising -helical, sheet, and / proteins, and different folds of small disulfide-rich proteins. Three different types of inhibitors can be distinguished based on their mechanism of action: canonical (standard mechanism) and non-canonical inhibitors, and serpins. The canonical inhibitors bind to the enzyme through an exposed convex binding loop, which is complementary to the active site of the enzyme. The mechanism of inhibition in this group is always very similar and resembles that of an ideal substrate. The non-canonical inhibitors interact through their N-terminal segment. There are also extensive secondary interactions outside the active site, contributing significantly to the strength, speed, and specificity of recognition. Serpins, similarly to the canonical inhibitors, interact with their target proteases in a substrate-like manner; however, cleavage of a single peptide bond in the binding loop leads to dramatic structural changes.Received 28 March 2003; received after revision 12 May 2003; accepted 16 May 2003  相似文献   

14.
Many bioactive peptides must be amidated at their carboxy terminus to exhibit full activity. Surprisingly, the amides are not generated by a transamidation reaction. Instead, the hormones are synthesized from glycine-extended intermediates that are transformed into active amidated hormones by oxidative cleavage of the glycine N-C alpha bond. In higher organisms, this reaction is catalyzed by a single bifunctional enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The PAM gene encodes one polypeptide with two enzymes that catalyze the two sequential reactions required for amidation. Peptidylglycine alpha-hydroxylating monooxygenase (PHM; EC 1.14.17.3) catalyzes the stereospecific hydroxylation of the glycine alpha-carbon of all the peptidylglycine substrates. The second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL; EC 4.3.2.5), generates alpha-amidated peptide product and glyoxylate. PHM contains two redox-active copper atoms that, after reduction by ascorbate, catalyze the reduction of molecular oxygen for the hydroxylation of glycine-extended substrates. The structure of the catalytic core of rat PHM at atomic resolution provides a framework for understanding the broad substrate specificity of PHM, identifying residues critical for PHM activity, and proposing mechanisms for the chemical and electron-transfer steps in catalysis. Since PHM is homologous in sequence and mechanism to dopamine beta-monooxygenase (DBM; EC 1.14.17.1), the enzyme that converts dopamine to norepinephrine during catecholamine biosynthesis, these structural and mechanistic insights are extended to DBM.  相似文献   

15.
The prolyl oligopeptidase family   总被引:6,自引:0,他引:6  
A group of serine peptidases, the prolyl oligopeptidase family, cannot hydrolyze peptides containing more than about 30 residues. This group is unrelated to the classical trypsin and subtilisin families, and includes dipeptidyl peptidase IV, acylaminoacyl peptidase and oligopeptidase B, in addition to the prototype prolyl oligopeptidase. The recent crystal structure determination of prolyl oligopeptidase (80 kDa) has shown that the enzyme contains a peptidase domain with an α/β hydrolase fold, and its catalytic triad is covered by the central tunnel of an unusual seven-bladed β-propeller. This domain operates as a gating filter, excluding large, structured peptides from the active site. The binding mode of substrates and the catalytic mechanism differ from that of the classical serine peptidases in several features. The members of the family are important targets of drug design. Prolyl oligopeptidase is involved in amnesia, depression and blood pressure control, dipeptidyl peptidase IV in type 2 diabetes and oligopeptidase B in trypanosomiasis. Received 8 August 2001; received after revision 19 September 2001; accepted 21 September 2001  相似文献   

16.
E Massarini  J J Cazzulo 《Experientia》1975,31(10):1126-1128
The kinetic order of addition of Mg2+ and L-malate to malic enzyme has been determined. Mg2+ is the first to bind, and probably acts as a link between the substrate and the active site.  相似文献   

17.
Enzymatic radical catalysis is defined as a mechanism of catalysis by which enzymes catalyze chemically difficult reactions by utilizing the high reactivity of free radicals. Adenosylcobalamin (coenzyme B12) serves as a cofactor for enzymatic radical reactions. The recent structural analysis of adenosylcobalamin-dependent diol dehydratase revealed that the substrate 1,2-propanediol and an essential potassium ion are located inside a (beta/alpha)8 barrel. Two hydroxyl groups of the substrate coordinate directly to the potassium ion which binds to the negatively charged inner part of the cavity. Cobalamin bound in the base-on mode covers the cavity to isolate the active site from solvent. Based on the three-dimensional structure and theoretical calculations, a new mechanism for diol dehydratase is proposed in which the potassium ion plays a direct role in the catalysis. The mechanisms for generation of a catalytic radical by homolysis of the coenzyme Co-C bond and for protection of radical intermediates from undesired side reactions during catalysis are discussed based on the structure. The reactivating factors for diol and glycerol dehydratases have been identified. These factors are a new type of molecular chaperone which participate in reactivation of the inactivated holoenzymes by mediating ATP-dependent exchange of the modified coenzyme for free intact coenzyme.  相似文献   

18.
Acylphosphatase is one of the smallest enzymes known (about 98 amino acid residues). It is present in organs and tissues of vertebrate species as two isoenzymes sharing over 55% of sequence homology; these appear highly conserved in differing species. The two isoenzymes can be involved in a number of physiological processes, though their effective biological function is not still certain. The solution and crystal structures of different isoenzymes are known, revealing a close packed protein with a fold similar to that shown by other phosphate-bind ing proteins. The structural data, together with an extended site-directed mutagenesis investigation, led to the identification of the residues involved in enzyme catalysis. However, it appears unlikely that these residues are able to perform the full catalytic cycle: a substrate-assisted catalytic mechanism has therefore been proposed, in which the phosphate moiety of the substrate could act as a nucleophile activating the catalytic water molecule. Received 12 November 1996; accepted 27 November 1996  相似文献   

19.
Molecular mechanisms of thrombin function   总被引:9,自引:0,他引:9  
The discovery of thrombin as a Na+-dependent allosteric enzyme has revealed a novel strategy for regulating protease activity and specificity. The allosteric nature of this enzyme influences all its physiologically important interactions and rationalizes a large body of structural and functional information. For the first time, a coherent mechanistic framework is available for understanding how thrombin interacts with fibrinogen, thrombomodulin and protein C, and how Na+ binding influences the specificity sites of the enzyme. This information can be used for engineering thrombin mutants with selective specificity towards protein C and for the rational design of potent active site inhibitors. Thrombin also serves as a paradigm for allosteric proteases. Elucidation of the molecular basis of the Na+-dependent allosteric regulation of catalytic activity, based on the residue present at position 225, provides unprecedented insights into the function and evolution of serine proteases. This mechanism represents one of the simplest and most important structure-function correlations ever reported for enzymes in general. All vitamin K-dependent proteases and some complement factors are subject to the Na+-dependent regulation discovered for thrombin. Na+ is therefore a key factor in the activation of zymogens in the coagulation and complement systems.  相似文献   

20.
The mechanism of glutamine-dependent amidotransferases   总被引:2,自引:0,他引:2  
Glutamine-dependent amidotransferases have been known for more than 30 years. The mechanism by which these enzymes generate ammonia from the glutamine amide nitrogen and transfer it to seven different chemical classes of acceptors has been the subject of intense scrutiny for the last 5 years. The increasing number of biochemical and structural studies dealing with amidotransferases and with mechanistically related enzymes has disclosed the dichotomy of the mechanisms within these enzymes for achieving the glutamine amide bond cleavage. Some of them use a catalytic Cys/His/Glu triad similar to serine protease, whereas the aminoterminal cysteine of the others is believed to play the same function. The transfer of ammonia from the glutamine site to the acceptor site which must operate in a concerted manner has been demonstrated in two cases to involve channelling but is still matter of investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号