首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The CD4 antigen has been subverted as a receptor by the human and simian immunodeficiency viruses (HIV-1, HIV-2 and SIV). Several groups have reported that recombinant, soluble forms of the CD4 molecule (sCD4) block the infection of T lymphocytes by HIV-1, as CD4 binds the HIV envelope glycoprotein, gp120, with high affinity. We now report that sCD4 blocks diverse strains of HIV-1, HIV-2 and SIV, but is less effective for HIV-2. The blocking effect is apparent even after adsorption of virions to CD4 cells. Soluble CD4 prevents HIV infection of T-lymphocytic and myelomonocytic cell lines, but neither sCD4 nor anti-CD4 antibodies inhibit infection of glioma and rhabdomyosarcoma cell lines.  相似文献   

2.
Molecular architecture of native HIV-1 gp120 trimers   总被引:1,自引:0,他引:1  
Liu J  Bartesaghi A  Borgnia MJ  Sapiro G  Subramaniam S 《Nature》2008,455(7209):109-113
The envelope glycoproteins (Env) of human and simian immunodeficiency viruses (HIV and SIV, respectively) mediate virus binding to the cell surface receptor CD4 on target cells to initiate infection. Env is a heterodimer of a transmembrane glycoprotein (gp41) and a surface glycoprotein (gp120), and forms trimers on the surface of the viral membrane. Using cryo-electron tomography combined with three-dimensional image classification and averaging, we report the three-dimensional structures of trimeric Env displayed on native HIV-1 in the unliganded state, in complex with the broadly neutralizing antibody b12 and in a ternary complex with CD4 and the 17b antibody. By fitting the known crystal structures of the monomeric gp120 core in the b12- and CD4/17b-bound conformations into the density maps derived by electron tomography, we derive molecular models for the native HIV-1 gp120 trimer in unliganded and CD4-bound states. We demonstrate that CD4 binding results in a major reorganization of the Env trimer, causing an outward rotation and displacement of each gp120 monomer. This appears to be coupled with a rearrangement of the gp41 region along the central axis of the trimer, leading to closer contact between the viral and target cell membranes. Our findings elucidate the structure and conformational changes of trimeric HIV-1 gp120 relevant to antibody neutralization and attachment to target cells.  相似文献   

3.
A Cordonnier  L Montagnier  M Emerman 《Nature》1989,340(6234):571-574
Infection by the human immunodeficiency virus (HIV) is initiated by the binding of its extracellular envelope glycoprotein, gp120, to the CD4 antigen on target cells. To map the residues of the HIV-1 glycoprotein that are critical for binding and to analyse the effects of binding on viral infectivity, we created 15 mutations in a region of gp120 that is important for binding to CD4 (refs 4,5). We find that substitution of a single amino acid (tryptophan at position 432) can abrogate CD4 binding and that virus carrying this mutation is non-infectious. By contrast, other amino-acid changes in the same region do not affect CD4 binding but restrict viral tropism: virions containing isoleucine substitutions at position 425 lose their ability to infect a monocyte cell line (U937 cells) but can still infect T-lymphocyte cell lines (CEM, SUP-T1) and activated human peripheral blood lymphocytes. These results indicate that cellular tropism of HIV can be influenced by a single amino-acid change in gp120.  相似文献   

4.
N R Landau  M Warton  D R Littman 《Nature》1988,334(6178):159-162
CD4, a cell-surface glycoprotein expressed on a subset of T-cells and macrophages, serves as the receptor for the human immunodeficiency virus (HIV) (reviewed in ref. 1), binding to the HIV envelope glycoprotein, gp120 with high affinity. Attempts to block infection in vivo by raising antibodies against gp120 have failed, probably because these antibodies have insufficient neutralizing activity. In addition, because of the extensive polymorphism of gp120 in different isolates of HIV, antibodies raised against one HIV isolate are only weakly effective against others. Because interaction with CD4 is essential for infectivity by all isolates of HIV, an agent that could mimic CD4 in its ability to bind to gp120, such as a peptide or monoclonal antibody, might block infection by a wide spectrum of isolates. To aid the identification of such a ligand we have defined regions of CD4 that are required for binding to gp120. Although human CD4 is similar to mouse CD4 in amino-acid sequence (55% identity, ref. 6) and structure, we have found that the murine protein fails to bind detectably to gp120 and have exploited this finding to study binding of gp120 to mouse-human chimaeric CD4 molecules. These studies show that amino-acid residues within the amino-terminal immunoglobulin-like domain of human CD4 are involved in binding to gp120 as well as to many anti-CD4 monoclonal antibodies.  相似文献   

5.
6.
Lymphocyte activation by HIV-1 envelope glycoprotein   总被引:25,自引:0,他引:25  
Cell activation by phytohaemagglutinin, phorbol ester and by the supernatant of phytohaemagglutinin-stimulated peripheral blood mononuclear cells induces the expression and cytopathic effects of latent human immunodeficiency virus type-1 (HIV-1) in vitro. The lymphocyte surface protein CD4 has been identified as a receptor for HIV-1 and binds the viral envelope glycoprotein (gp120). In the light of evidence indicating that one natural function of CD4 is as a growth factor receptor, we examined the ability of native gp120 to activate resting CD4-bearing lymphocytes. Our results indicate that gp120 has innate biological activity as a result of a specific interaction with CD4, inducing increases in intracellular levels of inositol trisphosphate and of calcium, and in interleukin-2 receptor expression and cell motility.  相似文献   

7.
HIV infection is blocked in vitro by recombinant soluble CD4   总被引:71,自引:0,他引:71  
The T-cell surface glycoprotein, CD4 (T4), acts as the cellular receptor for human immunodeficiency virus, type 1 (HIV-1), the first member of the family of viruses that cause acquired immunodeficiency syndrome. HIV recognition of CD4 is probably mediated through the virus envelope glycoprotein (gp120) as shown by co-immunoprecipitation of CD4 and gp120 (ref.5) and by experiments using recombinant gp120 as a binding probe. Here we demonstrate that recombinant soluble CD4(rsT4) purified from the conditioned medium of a stably transfected Chinese hamster ovary cell line is a potent inhibitor of both virus replication and virus-induced cell fusion (syncytium formation). These results suggest that rsT4 is sufficient to bind HIV, and that it represents a potential anti-viral therapy for HIV infection.  相似文献   

8.
The remarkable diversity, glycosylation and conformational flexibility of the human immunodeficiency virus type 1 (HIV-1) envelope (Env), including substantial rearrangement of the gp120 glycoprotein upon binding the CD4 receptor, allow it to evade antibody-mediated neutralization. Despite this complexity, the HIV-1 Env must retain conserved determinants that mediate CD4 binding. To evaluate how these determinants might provide opportunities for antibody recognition, we created variants of gp120 stabilized in the CD4-bound state, assessed binding of CD4 and of receptor-binding-site antibodies, and determined the structure at 2.3 A resolution of the broadly neutralizing antibody b12 in complex with gp120. b12 binds to a conformationally invariant surface that overlaps a distinct subset of the CD4-binding site. This surface is involved in the metastable attachment of CD4, before the gp120 rearrangement required for stable engagement. A site of vulnerability, related to a functional requirement for efficient association with CD4, can therefore be targeted by antibody to neutralize HIV-1.  相似文献   

9.
A P Fields  D P Bednarik  A Hess  W S May 《Nature》1988,333(6170):278-280
AIDS is an immunoregulatory disorder characterized by depletion of the CD4+, helper/inducer lymphocyte population. The causative agent of this disease is the human immunodeficiency virus, HIV, which infects CD4+ cells and leads to cytopathic effects characterized by syncytia formation and cell death. Recent studies have demonstrated that binding of HIV to its cellular receptor CD4 is necessary for viral entry. We find that binding of HIV to CD4 induces rapid and sustained phosphorylation of CD4 which could involve protein kinase C. HIV-induced CD4 phosphorylation can be blocked by antibody against CD4 and monoclonal antibody against the HIV envelope glycoprotein gp120, indicating that a specific interaction between CD4 and gp120 is required for phosphorylation. Electron microscopy shows that a protein kinase C inhibitor does not impair binding of HIV to CD4+ cells, but causes an apparent accumulation of virus particles at the cell surface, at the same time inhibiting viral infectivity. These results indicate a possible role for HIV-induced CD4 phosphorylation in viral entry and identify a potential target for antiviral therapy.  相似文献   

10.
Human immunodeficiency virus (HIV), the causative agent of AIDS, infects human lymphocytes and monocytes. An interaction between the viral envelope gp 120 and CD4 protein is required to initiate an infectious cycle. HIV infection in vitro induces syncytium formation by cell-to-cell fusion; this aspect of viral cytopathogenicity is even more dependent on gp120-CD4 interactions. That gp120 is extremely heavily glycosylated (31-36 N-linked glycans per molecule), suggests involvement of N-linked glycans in the gp120-CD4 interaction. We therefore investigated the effects of castanospermine, 1-deoxynojirimycin (dNM) and 1-deoxymannojirimycin (dMM), three trimming glycosidase inhibitors which perturb N-linked glycan structure, on induction of the formation of syncytium between HIV-infected and CD4-expressing cells. The glucosidase inhibitors castanospermine and dNM, but not the mannosidase inhibitor dMM, inhibited syncytium formation and interfered with infectivity. The potential of glucosidase inhibitors as anti-HIV therapeutic agents deserves further investigation, especially because dNM and related compounds show little toxicity in vitro and in vivo.  相似文献   

11.
Prevention of HIV-1 IIIB infection in chimpanzees by CD4 immunoadhesin   总被引:11,自引:0,他引:11  
The first step in infection by the human immunodeficiency virus (HIV) is the specific binding of gp120, the envelope glycoprotein of HIV, to its cellular receptor, CD4. To inhibit this interaction, soluble CD4 analogues that compete for gp120 binding and block HIV infection in vitro have been developed. To determine whether these analogues can protect an uninfected individual from challenge with HIV, we used the chimpanzee model system of cell-free HIV infection. Chimpanzees are readily infected with the IIIB strain of HIV-1, becoming viraemic within about 4-6 weeks of challenge, although they do not develop the profound CD4+ T-cell depletion and immunodeficiency characteristic of HIV infection in humans. CD4 immunoadhesin (CD4-IgG), a chimaeric molecule consisting of the N-terminal two immunoglobulin-like regions of CD4 joined to the Fc region of human IgG1, was selected as the CD4 analogue for testing because it has a longer half-life than CD4, contributed by the IgG Fc portion of the molecule. In humans, this difference results in a 25-fold increased concentration of CD4-IgG in the blood compared with recombinant CD4. Here we report that pretreatment with CD4-IgG can prevent the infection of chimpanzees with HIV-1. The need for a preventative agent is particularly acute in perinatal HIV transmission. As recombinant CD4-IgG, like the parent IgG molecule, efficiently crosses the primate placenta, it may be possible to set up an immune state in a fetus before HIV transfer occurs, thus preventing infection.  相似文献   

12.
T Shioda  J A Levy  C Cheng-Mayer 《Nature》1991,349(6305):167-169
Strains of human immunodeficiency virus type 1 (HIV-1) display a high degree of biological heterogeneity which may be linked to certain clinical manifestation of AIDS. They vary in their ability to infect different cell types, to replicate rapidly and to high titre in culture, to down-modulate the CD4 receptor, and to cause cytopathic changes in infected cells. Some of these in vitro properties correlate with pathogenicity of the virus in vivo. To map the viral determinants of the cellular host range of HIV-1, recombinant viruses were generated between biologically active molecular clones of HIV-1 isolates showing differences in infection of primary peripheral blood macrophages and established T-cell lines. We report here that a specific region of the envelope gp120 gene representing 159 amino-acid residues of glycoprotein gp120 seems to determine macrophage tropism, whereas an overlapping region representing 321 amino-acid residues determines T cell-line tropism. These studies provide a basis for relating functional domains of the HIV-1 env gene to pathogenic potential.  相似文献   

13.
人体免疫缺损病毒的包膜蛋白gp120的V3环区包含一段在人类蛋白质中很少出现的高度保守序列,但这段序列与纤溶酶原被纤溶酶原激活剂酶切位点附近序列有同源性.由于V3环区在人体免疫缺损病毒侵染细胞过程中的重要性,评估了尿激酶对人体免疫缺损病毒侵染能力的影响.通过检测逆转录酶活力,P24抗原的表达和合胞体形成情况发现尿激酶可以抑制人体免疫缺损病毒对多种淋巴瘤和白血病细胞系,如MT4、CCM、H9和外周血单核细胞的侵染能力,并且这种抑制与尿激酶浓度呈剂量依赖关系.那些能够被尿激酶抑制的人体免疫缺损病毒株其V3环区序列必须与纤溶酶原激活区亭列同源,实验事常用病毒株包括BRU和RF以及某些野生病毒株.研究结果显示尿激酶在体外实验中可以抑制人体免疫缺损病毒的侵染能力.  相似文献   

14.
Chen B  Vogan EM  Gong H  Skehel JJ  Wiley DC  Harrison SC 《Nature》2005,433(7028):834-841
Envelope glycoproteins of human and simian immunodeficiency virus (HIV and SIV) undergo a series of conformational changes when they interact with receptor (CD4) and co-receptor on the surface of a potential host cell, leading ultimately to fusion of viral and cellular membranes. Structures of fragments of gp120 and gp41 from the envelope protein are known, in conformations corresponding to their post-attachment and postfusion states, respectively. We report the crystal structure, at 4 A resolution, of a fully glycosylated SIV gp120 core, in a conformation representing its prefusion state, before interaction with CD4. Parts of the protein have a markedly different organization than they do in the CD4-bound state. Comparison of the unliganded and CD4-bound structures leads to a model for events that accompany receptor engagement of an envelope glycoprotein trimer. The two conformations of gp120 also present distinct antigenic surfaces. We identify the binding site for a compound that inhibits viral entry.  相似文献   

15.
The human immunodeficiency virus type 1 (HIV-1) exploits the cell surface CD4 molecule to initiate the infection which can lead, eventually, to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope protein, gp120, interacts specifically with CD4 and soluble CD4 molecules have been shown to inhibit HIV infectivity in vitro. Effective inhibition in vivo may, however, require more potent reagents. We describe here the generation of molecules which combine the specificity of CD4 and the effector functions of different immunoglobulin subclasses. Replacing the VH and CH1 domains of either mouse gamma 2a or mu heavy chains with the first two N-terminal domains of CD4 results in molecules that are secreted in the absence of any immunoglobulin light chains. We find that the pentameric CD4-IgM chimaera is at least 1,000-fold more active than its dimeric CD4-IgG counterpart in syncytium inhibition assays and that effector functions, such as the binding of Fc receptors and the first component of the complement cascade (Clq), are retained. Similar chimaeric molecules, combining CD4 with human IgG were recently described by Capon et al., but these included the CH1 domain and did not bind Clq. Deletion of the CH1 domain may allow the association and secretion of heavy chains in the absence of light chains, and we suggest that the basic design of our constructs may be generally and usefully applied.  相似文献   

16.
Binding of the human immunodeficiency virus (HIV) to infectable host cells, such as B and T lymphocytes, monocytes and colorectal cells, is mediated by a high-affinity interaction between the gp120 component of the viral envelope glycoprotein and the CD4 receptor. Upon binding, it is thought that the second component of the envelope, gp41, mediates fusion between the viral envelope and host cell membranes. However, the early steps of HIV infection have not yet been thoroughly elucidated. Viral entry was first reported to be mediated by pH-dependent receptor-mediated endocytosis; subsequent studies have shown entry to be pH-independent. Although direct fusion of virus to plasma membranes of infected cells has been observed by electron microscopy, it is still formally possible that the infectious path of the virus involves receptor-mediated endocytosis. To gain a better understanding of receptor function in viral entry, we have analysed the ability of several altered or truncated forms of CD4 to serve as effective viral receptors. Our results indicate that domains beyond the HIV-binding region of CD4 are not required for viral infection. Some of the altered forms of CD4 that serve as effective HIV receptors are severely impaired in their ability to be endocytosed. These experiments therefore support the notion that viral fusion to the plasma membrane is sufficient for infection.  相似文献   

17.
《科学通报(英文版)》1998,43(19):1630-1630
Since 1992, the study of biological functions of HIV-1 gp41 has made great progress. Experimental evidence from several research groups demonstrated that gp41 has a putative cellular receptor. A recombinant soluble gp41 (aa539-684) and gp41 immunosuppressive peptide (aa583-599) could bind to human B lymphocytes and monocytes, but weakly bind to T lymphocytes. It was found that gp41 contains two cellular binding sites (aa583-599 and 641-675). GP41 could selectively inhibit cell proliferation of human T, B lymphocytes and monocytes, enhance human MHC class Ⅰ, Ⅱ and ICAM-1 molecule expression on cell surface. Gp41 binding proteins and a monoclonal antibody against the first binding site could inhibit this modulation effect. Amino acid sequence homology exists between gp41 and human type Ⅰ interferons, and the homologous region is located in the first binding site on gp41 and in the receptor binding site on type Ⅰ interferons. Studies in other groups indicate that both binding sites in gp41 may be associated with HIV infection of cells. Peptides containing two binding sites could respectively inhibit HIV infection of cells. A monoclonal antibody recognizing the second binding site could neutralize lab-strains and recently separated strains of HIV-1. Besides, antibodies against two regions (homologous with gp41 binding sites) of SIV transmembrane protein gp32 could protect macaques from SIV infection. These results suggest that the study of gp41 binding sites and cellular receptor could contribute to understanding the mechanism of HIV infection and to developing HIV vaccine and anti-HIV drugs.  相似文献   

18.
L K Clayton  M Sieh  D A Pious  E L Reinherz 《Nature》1989,339(6225):548-551
Interactions of CD4 with the class II major histocompatibility complex (MHC) are crucial during thymic ontogeny and subsequently for helper and cytotoxic functions of CD4+CD8- T lymphocytes. CD4 is the receptor for the T-lymphotropic human immunodeficiency virus and binds its envelope glycoprotein, gp120. The residues involved in gp120 binding have been localized to a region within the immunoglobulin-like domain I of CD4, which corresponds to CDR2 of an immunoglobulin variable region, but the CD4 residues important in MHC class II interaction have not been characterized. Here, using a cell-binding assay dependent specifically on the CD4-MHC class II association, we analyse the effects of mutations in CD4 on class II versus gp120 binding. Mutations in CDR2 that destroy gp120 binding affect CD4-MHC class II binding similarly. In addition, binding of soluble gp120 to CD4-transfected cells abrogates their ability to interact with class II-bearing B lymphocytes. In contrast, other mutations within domains I or II that have no effect on gp120 binding eliminate or substantially decrease class II interaction. Thus, the CD4 binding site for class II MHC is more complex than the gp120 binding site, possibly reflecting a broader area of contact with the former ligand and a requirement for appropriate juxtaposition of the two N-terminal domains. The ability of gp120 to inhibit the binding of class II MHC to CD4 could be important in disrupting normal T-cell physiology, acting both to inhibit immune responses and to prevent differentiation of CD4+CD8+ thymocytes into CD4+CD8- T lymphocytes.  相似文献   

19.
The CD4 (T4) molecule is expressed on a subset of T lymphocytes involved in class II MHC recognition, and is probably the physiological receptor for one or more monomorphic regions of class II MHC (refs 1-3). CD4 also functions as a receptor for the human immunodeficiency virus (HIV) exterior envelope glycoprotein (gp120) (refs 4-9), being essential for virus entry into the host cell and for membrane fusion, which contributes to cell-to-cell transmission of the virus and to its cytopathic effects. We have used a baculovirus expression system to generate mg quantities of a hydrophilic extracellular segment of CD4. Concentrations of soluble CD4 in the nanomolar range, like certain anti-CD4 monoclonal antibodies, inhibit syncytium formation and HIV infection by binding gp120-expressing cells. Perhaps more importantly, class II specific T-cell interactions are uninhibited by soluble CD4 protein, whereas they are virtually abrogated by equivalent amounts of anti-T4 antibody. This may reflect substantial differences in CD4 affinity for gp120 and class II MHC.  相似文献   

20.
Biological properties of a CD4 immunoadhesin   总被引:32,自引:0,他引:32  
Molecular fusions of CD4, the receptor for human immunodeficiency virus (HIV), with immunoglobulin (termed CD4 immunoadhesins) possess both the gp120-binding and HIV-blocking properties of recombinant soluble CD4, and certain properties of IgG, notably long plasma half-life and Fc receptor binding. Here we show that a CD4 immunoadhesin can mediate antibody-dependent cell-mediated cytotoxicity (ADCC) towards HIV-infected cells, although, unlike natural anti-gp120 antibodies, it does not allow ADCC towards uninfected CD4-expressing cells that have bound soluble gp120 to the CD4 on their surface. In addition, CD4 immunoadhesin, like natural IgG molecules, is efficiently transferred across the placenta of a primate. These observations have implications for the therapeutic application of CD4 immunoadhesins, particularly in the area of perinatal transmission of HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号