首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reddy SK  Rape M  Margansky WA  Kirschner MW 《Nature》2007,446(7138):921-925
Eukaryotic cells rely on a surveillance mechanism known as the spindle checkpoint to ensure accurate chromosome segregation. The spindle checkpoint prevents sister chromatids from separating until all kinetochores achieve bipolar attachments to the mitotic spindle. Checkpoint proteins tightly inhibit the anaphase-promoting complex (APC), a ubiquitin ligase required for chromosome segregation and progression to anaphase. Unattached kinetochores promote the binding of checkpoint proteins Mad2 and BubR1 to the APC-activator Cdc20, rendering it unable to activate APC. Once all kinetochores are properly attached, however, cells inactivate the checkpoint within minutes, allowing for the rapid and synchronous segregation of chromosomes. How cells switch from strong APC inhibition before kinetochore attachment to rapid APC activation once attachment is complete remains a mystery. Here we show that checkpoint inactivation is an energy-consuming process involving APC-dependent multi-ubiquitination. Multi-ubiquitination by APC leads to the dissociation of Mad2 and BubR1 from Cdc20, a process that is reversed by a Cdc20-directed de-ubiquitinating enzyme. The mutual regulation between checkpoint proteins and APC leaves the cell poised for rapid checkpoint inactivation and ensures that chromosome segregation promptly follows the completion of kinetochore attachment. In addition, our results suggest a mechanistic basis for how cancer cells can have a compromised spindle checkpoint without corresponding mutations in checkpoint genes.  相似文献   

2.
Y Gachet  S Tournier  J B Millar  J S Hyams 《Nature》2001,412(6844):352-355
The accurate segregation of chromosomes at mitosis depends on a correctly assembled bipolar spindle that exerts balanced forces on each sister chromatid. The integrity of mitotic chromosome segregation is ensured by the spindle assembly checkpoint (SAC) that delays mitosis in response to defective spindle organisation or failure of chromosome attachment. Here we describe a distinct mitotic checkpoint in the fission yeast, Schizosaccharomyces pombe, that monitors the integrity of the actin cytoskeleton and delays sister chromatid separation, spindle elongation and cytokinesis until spindle poles have been properly oriented. This mitotic delay is imposed by a stress-activated mitogen-activated protein (MAP) kinase pathway but is independent of the anaphase-promoting complex (APC).  相似文献   

3.
CENP-E is a putative kinetochore motor that accumulates just before mitosis.   总被引:57,自引:0,他引:57  
T J Yen  G Li  B T Schaar  I Szilak  D W Cleveland 《Nature》1992,359(6395):536-539
The mechanics of chromosome movement, mitotic spindle assembly and spindle elongation have long been central questions of cell biology. After attachment in prometaphase of a microtubule from one pole, duplicated chromosome pairs travel towards the pole in a rapid but discontinuous motion. This is followed by a slower congression towards the midplate as the chromosome pair orients with each kinetochore attached to the microtubules from the nearest pole. The pairs disjoin at anaphase and translocate to opposite poles and the interpolar distance increases. Here we identify CENP-E as a kinesin-like motor protein (M(r) 312,000) that accumulates in the G2 phase of the cell cycle. CENP-E associates with kinetochores during congression, relocates to the spindle midzone at anaphase, and is quantitatively discarded at the end of the cell division. CENP-E is likely to be one of the motors responsible for mammalian chromosome movement and/or spindle elongation.  相似文献   

4.
It is generally believed that the equal distribution of genetic materials to two daughter cells during mitosis is the key to cell health and development. During the dynamic process, spindle checkpoint plays a very important role in chromosome movements and final sister chromatid separation. The equal and precise segregation of chromosomes contributes to the genomic stability while aberrant separations result in chromosome instability that causes pathogenesis of certain diseases such as Down’s syndrome and cancers. Kinetochore and its regulatory proteins consist of the spindle checkpoint and determine the spatial and temporal orders of chromosome segregation.  相似文献   

5.
Clathrin is required for the function of the mitotic spindle   总被引:1,自引:0,他引:1  
Royle SJ  Bright NA  Lagnado L 《Nature》2005,434(7037):1152-1157
Clathrin has an established function in the generation of vesicles that transfer membrane and proteins around the cell. The formation of clathrin-coated vesicles occurs continuously in non-dividing cells, but is shut down during mitosis, when clathrin concentrates at the spindle apparatus. Here, we show that clathrin stabilizes fibres of the mitotic spindle to aid congression of chromosomes. Clathrin bound to the spindle directly by the amino-terminal domain of clathrin heavy chain. Depletion of clathrin heavy chain using RNA interference prolonged mitosis; kinetochore fibres were destabilized, leading to defective congression of chromosomes to the metaphase plate and persistent activation of the spindle checkpoint. Normal mitosis was rescued by clathrin triskelia but not the N-terminal domain of clathrin heavy chain, indicating that stabilization of kinetochore fibres was dependent on the unique structure of clathrin. The importance of clathrin for normal mitosis may be relevant to understanding human cancers that involve gene fusions of clathrin heavy chain.  相似文献   

6.
The kinetochore is a specialized structure at the centromere of eukaryotic chromosomes that attaches chromosomes to the mitotic spindle. Recently, several lines of evidence have suggested that kinetochores may have more than a passive role in the movement of chromosomes during mitosis and meiosis. Kinetochores seem to attract and 'capture' microtubules that grow from the spindle poles and microtubules may lengthen or shorten by the addition or subtraction of tubulin subunits at their kinetochore-associated ends. An attractive hypothesis is that kinetochores function as 'self-contained engines running on a microtubule track'. Here, we show that kinetochores can be experimentally detached from chromosomes when caffeine is applied to Chinese hamster ovary cells that are arrested in the G1/S phase of the cell cycle. The detached kinetochore fragments can still interact with spindle microtubules and complete all the mitotic movements in the absence of other chromosomal components. As these cells enter mitosis before DNA synthesis is completed, chromosome replication need not be a prerequisite for the pairing, alignment and segregation of kinetochores.  相似文献   

7.
Guse A  Carroll CW  Moree B  Fuller CJ  Straight AF 《Nature》2011,477(7364):354-358
During cell division, chromosomes are segregated to nascent daughter cells by attaching to the microtubules of the mitotic spindle through the kinetochore. Kinetochores are assembled on a specialized chromatin domain called the centromere, which is characterized by the replacement of nucleosomal histone H3 with the histone H3 variant centromere protein A (CENP-A). CENP-A is essential for centromere and kinetochore formation in all eukaryotes but it is unknown how CENP-A chromatin directs centromere and kinetochore assembly. Here we generate synthetic CENP-A chromatin that recapitulates essential steps of centromere and kinetochore assembly in vitro. We show that reconstituted CENP-A chromatin when added to cell-free extracts is sufficient for the assembly of centromere and kinetochore proteins, microtubule binding and stabilization, and mitotic checkpoint function. Using chromatin assembled from histone H3/CENP-A chimaeras, we demonstrate that the conserved carboxy terminus of CENP-A is necessary and sufficient for centromere and kinetochore protein recruitment and function but that the CENP-A targeting domain--required for new CENP-A histone assembly--is not. These data show that two of the primary requirements for accurate chromosome segregation, the assembly of the kinetochore and the propagation of CENP-A chromatin, are specified by different elements in the CENP-A histone. Our unique cell-free system enables complete control and manipulation of the chromatin substrate and thus presents a powerful tool to study centromere and kinetochore assembly.  相似文献   

8.
The spindle checkpoint prevents chromosome mis-segregation by delaying sister chromatid separation until all chromosomes have achieved bipolar attachment to the mitotic spindle. Its operation is essential for accurate chromosome segregation, whereas its dysregulation can contribute to birth defects and tumorigenesis. The target of the spindle checkpoint is the anaphase-promoting complex (APC), a ubiquitin ligase that promotes sister chromatid separation and progression to anaphase. Using a short hairpin RNA screen targeting components of the ubiquitin-proteasome pathway in human cells, we identified the deubiquitinating enzyme USP44 (ubiquitin-specific protease 44) as a critical regulator of the spindle checkpoint. USP44 is not required for the initial recognition of unattached kinetochores and the subsequent recruitment of checkpoint components. Instead, it prevents the premature activation of the APC by stabilizing the APC-inhibitory Mad2-Cdc20 complex. USP44 deubiquitinates the APC coactivator Cdc20 both in vitro and in vivo, and thereby directly counteracts the APC-driven disassembly of Mad2-Cdc20 complexes (discussed in an accompanying paper). Our findings suggest that a dynamic balance of ubiquitination by the APC and deubiquitination by USP44 contributes to the generation of the switch-like transition controlling anaphase entry, analogous to the way that phosphorylation and dephosphorylation of Cdk1 by Wee1 and Cdc25 controls entry into mitosis.  相似文献   

9.
During cell division, sister chromosomes segregate from each other on a microtubule-based structure called the mitotic spindle. Proteins bind to the centromere, a region of chromosomal DNA, to form the kinetochore, which mediates chromosome attachment to the mitotic spindle microtubules. In the budding yeast Saccharomyces cerevisiae, genetic analysis has shown that the 28-basepair (bp) CDEIII region of the 125-bp centromere DNA sequence (CEN sequence) is the main region controlling chromosome segregation in vivo. Therefore it is likely that proteins binding to the CDEIII region link the centromeres to the microtubules during mitosis. A complex of proteins (CBF3) that binds specifically to the CDEIII DNA sequence has been isolated by affinity chromatography. Here we describe kinetochore function in vitro. The CBF3 complex can link DNA to microtubules, and the complex contains a minus-end-directed microtubule-based motor. We suggest that microtubule-based motors form the fundamental link between microtubules and chromosomes at mitosis.  相似文献   

10.
The mitotic checkpoint protein hsMad2 is required to arrest cells in mitosis when chromosomes are unattached to the mitotic spindle. The presence of a single, lagging chromosome is sufficient to activate the checkpoint, producing a delay at the metaphase-anaphase transition until the last spindle attachment is made. Complete loss of the mitotic checkpoint results in embryonic lethality owing to chromosome mis-segregation in various organisms. Whether partial loss of checkpoint control leads to more subtle rates of chromosome instability compatible with cell viability remains unknown. Here we report that deletion of one MAD2 allele results in a defective mitotic checkpoint in both human cancer cells and murine primary embryonic fibroblasts. Checkpoint-defective cells show premature sister-chromatid separation in the presence of spindle inhibitors and an elevated rate of chromosome mis-segregation events in the absence of these agents. Furthermore, Mad2+/- mice develop lung tumours at high rates after long latencies, implicating defects in the mitotic checkpoint in tumorigenesis.  相似文献   

11.
准确的染色体分离依赖于有丝分裂过程的精确调控,包括有丝分裂的时间,及纺锤体检查点的正确调控等。通过动态观察有丝分裂染色体的运动可对上述研究进行精确定量。结果显示,我们利用逆转录病毒系统成功构建了稳定融合表达绿色荧光蛋白GFP-H2B的HeLa细胞系,结合细胞同步化方法,建立了一套利用活细胞荧光共聚焦显微镜观察HeLa细胞有丝分裂的实验体系。  相似文献   

12.
Chromosomes interact through their kinetochores with microtubule plus ends and they are segregated to the spindle poles as the kinetochore microtubules shorten during anaphase A of mitosis. The molecular natures and identities of coupling proteins that allow microtubule depolymerization to pull chromosomes to poles during anaphase have long remained elusive. In budding yeast, the ten-protein Dam1 complex is a critical microtubule-binding component of the kinetochore that oligomerizes into a 50-nm ring around a microtubule in vitro. Here we show, with the use of a real-time, two-colour fluorescence microscopy assay, that the ring complex moves processively for several micrometres at the ends of depolymerizing microtubules without detaching from the lattice. Electron microscopic analysis of 'end-on views' revealed a 16-fold symmetry of the kinetochore rings. This out-of-register arrangement with respect to the 13-fold microtubule symmetry is consistent with a sliding mechanism based on an electrostatically coupled ring-microtubule interface. The Dam1 ring complex is a molecular device that can translate the force generated by microtubule depolymerization into movement along the lattice to facilitate chromosome segregation.  相似文献   

13.
准确的染色体分离依赖于有丝分裂过程的精确调控,包括有丝分裂的时间,及纺锤体检查点的正确调控等。通过动态观察有丝分裂染色体的运动可对上述研究进行精确定量。结果显示,利用逆转录病毒系统成功构建了稳定融合表达绿色荧光蛋白GFP—H2B的HeLa细胞系,结合细胞同步化方法,建立了一套利用活细胞荧光共聚焦显微镜观察HeLa细胞有丝分裂的实验体系。  相似文献   

14.
During mitosis, the mitotic spindle, a bipolar structure composed of microtubules (MTs) and associated motor proteins, segregates sister chromatids to daughter cells. Initially some MTs emanating from one centrosome attach to the kinetochore at the centromere of one of the duplicated chromosomes. This attachment allows rapid poleward movement of the bound chromosome. Subsequent attachment of the sister kinetochore to MTs growing from the other centrosome results in the bi-orientation of the chromosome, in which interactions between kinetochores and the plus ends of MTs are formed and stabilized. These processes ensure alignment of chromosomes during metaphase and their correct segregation during anaphase. Although many proteins constituting the kinetochore have been identified and extensively studied, the signalling responsible for MT capture and stabilization is unclear. Small GTPases of the Rho family regulate cell morphogenesis by organizing the actin cytoskeleton and regulating MT alignment and stabilization. We now show that one member of this family, Cdc42, and its effector, mDia3, regulate MT attachment to kinetochores.  相似文献   

15.
Jeganathan KB  Malureanu L  van Deursen JM 《Nature》2005,438(7070):1036-1039
Cdc20 and Cdh1 are the activating subunits of the anaphase-promoting complex (APC), an E3 ubiquitin ligase that drives cells into anaphase by inducing degradation of cyclin B and the anaphase inhibitor securin. To prevent chromosome missegregation, APC activity directed against these mitotic regulators must be inhibited until all chromosomes are properly attached to the mitotic spindle. Here we show that in mitosis timely destruction of securin by APC is regulated by the nucleocytoplasmic transport factors Rae1 and Nup98. We show that combined Rae1 and Nup98 haploinsufficiency in mice results in premature separation of sister chromatids, severe aneuploidy and untimely degradation of securin. We find that Rae1 and Nup98 form a complex with Cdh1-activated APC (APC(Cdh1)) in early mitosis and specifically inhibit APC(Cdh1)-mediated ubiquitination of securin. Dissociation of Rae1 and Nup98 from APC(Cdh1) coincides with the release of the mitotic checkpoint protein BubR1 from Cdc20-activated APC (APC(Cdc20)) at the metaphase to anaphase transition. Together, our results suggest that Rae1 and Nup98 are temporal regulators of APC(Cdh1) that maintain euploidy by preventing unscheduled degradation of securin.  相似文献   

16.
Chao WC  Kulkarni K  Zhang Z  Kong EH  Barford D 《Nature》2012,484(7393):208-213
In mitosis, the spindle assembly checkpoint (SAC) ensures genome stability by delaying chromosome segregation until all sister chromatids have achieved bipolar attachment to the mitotic spindle. The SAC is imposed by the mitotic checkpoint complex (MCC), whose assembly is catalysed by unattached chromosomes and which binds and inhibits the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome segregation. Here, using the crystal structure of Schizosaccharomyces pombe MCC (a complex of mitotic spindle assembly checkpoint proteins Mad2, Mad3 and APC/C co-activator protein Cdc20), we reveal the molecular basis of MCC-mediated APC/C inhibition and the regulation of MCC assembly. The MCC inhibits the APC/C by obstructing degron recognition sites on Cdc20 (the substrate recruitment subunit of the APC/C) and displacing Cdc20 to disrupt formation of a bipartite D-box receptor with the APC/C subunit Apc10. Mad2, in the closed conformation (C-Mad2), stabilizes the complex by optimally positioning the Mad3 KEN-box degron to bind Cdc20. Mad3 and p31(comet) (also known as MAD2L1-binding protein) compete for the same C-Mad2 interface, which explains how p31(comet) disrupts MCC assembly to antagonize the SAC. This study shows how APC/C inhibition is coupled to degron recognition by co-activators.  相似文献   

17.
Shi Q  King RW 《Nature》2005,437(7061):1038-1042
Although mutations in cell cycle regulators or spindle proteins can perturb chromosome segregation, the causes and consequences of spontaneous mitotic chromosome nondisjunction in human cells are not well understood. It has been assumed that nondisjunction of a chromosome during mitosis will yield two aneuploid daughter cells. Here we show that chromosome nondisjunction is tightly coupled to regulation of cytokinesis in human cell lines, such that nondisjunction results in the formation of tetraploid rather than aneuploid cells. We observed that spontaneously arising binucleated cells exhibited chromosome mis-segregation rates up to 166-fold higher than the overall mitotic population. Long-term imaging experiments indicated that most binucleated cells arose through a bipolar mitosis followed by regression of the cleavage furrow hours later. Nondisjunction occurred with high frequency in cells that became binucleated by furrow regression, but not in cells that completed cytokinesis to form two mononucleated cells. Our findings indicate that nondisjunction does not directly yield aneuploid cells, but rather tetraploid cells that may subsequently become aneuploid through further division. The coupling of spontaneous segregation errors to furrow regression provides a potential explanation for the prevalence of hyperdiploid chromosome number and centrosome amplification observed in many cancers.  相似文献   

18.
Contrary to the traditional view that microtubules pull chromosomes polewards during the anaphase stage of meiotic and mitotic cell divisions, new evidence suggests that the chromosome movements are driven by a motor located at the kinetochore. The process of chromosome segregation involves proper arrangement of kinetochores for spindle attachment, followed by spindle attachment and chromosome movement. Mechanisms in Drosophila for chromosome segregation in meiosis differ in males and females, implying the action of different gene products in the two sexes. A product encoded at the claret locus in Drosophila is required for normal chromosome segregation in meiosis in females and in early mitotic divisions of the embryo. Here we show that the predicted amino-acid sequence of this product is related to the heavy chain of kinesin. The conserved region corresponds to the kinesin motor domain and includes the ATP-binding site and a region that can bind microtubules. A second region contains a leucine repeat motif which may mediate protein-subunit interactions necessary for attachment of chromosomes to the spindle. The mutant phenotype of chromosome nondisjunction and loss, and its similarity to the kinesin ATP-binding domain, suggest that the product encoded at claret not only stabilizes chromosome attachments to the spindle, but may also be a motor that drives chromosome segregation in female meiosis.  相似文献   

19.
Sato M  Toda T 《Nature》2007,447(7142):334-337
Microtubules are essential intracellular structures involved in several cellular phenomena, including polarity establishment and chromosome segregation. Because the nuclear envelope persists during mitosis (closed mitosis) in fission yeast (Schizosaccharomyces pombe), cytoplasmic microtubules must be reorganized into the spindle in the compartmentalized nucleus on mitotic entry. An ideal mechanism might be to take advantage of an evolutionarily conserved microtubule formation system that uses the Ran-GTPase nuclear transport machinery, but no targets of Ran for spindle formation have been identified in yeast. Here we show that a microtubule-associated protein, Alp7, which forms a complex with Alp14, is a target of Ran in yeast for spindle formation. The Ran-deficient pim1 mutant (pim1-F201S) failed to show mitosis-specific nuclear accumulation of Alp7. Moreover, this mutant exhibited compromised spindle formation and early mitotic delay. Importantly, these defects were suppressed by Alp7 that was artificially targeted to the nucleus by a Ran-independent and importin-alpha-mediated system. Thus, Ran targets Alp7-Alp14 to achieve nuclear spindle formation, and might differentiate its targets depending on whether the organism undergoes closed or open mitosis.  相似文献   

20.
Heterochromatin links to centromeric protection by recruiting shugoshin   总被引:1,自引:0,他引:1  
Yamagishi Y  Sakuno T  Shimura M  Watanabe Y 《Nature》2008,455(7210):251-255
The centromere of a chromosome is composed mainly of two domains, a kinetochore assembling core centromere and peri-centromeric heterochromatin regions. The crucial role of centromeric heterochromatin is still unknown, because even in simpler unicellular organisms such as the fission yeast Schizosaccharomyces pombe, the heterochromatin protein Swi6 (HP1 homologue) has several functions at centromeres, including silencing gene expression and recombination, enriching cohesin, promoting kinetochore assembly, and, ultimately, preventing erroneous microtubule attachment to the kinetochores. Here we show that the requirement of heterochromatin for mitotic chromosome segregation is largely replaced by forcibly enriching cohesin at centromeres in fission yeast. However, this enrichment of cohesin is not sufficient to replace the meiotic requirement for heterochromatin. We find that the heterochromatin protein Swi6 associates directly with meiosis-specific shugoshin Sgo1, a protector of cohesin at centromeres. A point mutation of Sgo1 (V242E), which abolishes the interaction with Swi6, impairs the centromeric localization and function of Sgo1. The forced centromeric localization of Sgo1 restores proper meiotic chromosome segregation in swi6 cells. We also show that the direct link between HP1 and shugoshin is conserved in human cells. Taken together, our findings suggest that the recruitment of shugoshin is the important primary role for centromeric heterochromatin in ensuring eukaryotic chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号