首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
When a pico satellite is under normal operational condi- tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc- tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de- fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel- lite, and the results are compared.  相似文献   

2.
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.  相似文献   

3.
New rapid transfer alignment method for SINS of airborne weapon systems   总被引:2,自引:0,他引:2  
Transfer alignment is an effective alignment method for the strapdown inertial navigation system (SINS) of airborne weapon systems. The traditional transfer alignment methods for large misalignment angles alignment use nonlinear transfer align- ment models and incorporate nonlinear filtering. A rapid transfer alignment method with linear models and linear filtering for ar- bitrary misalignment angles is presented. Through the attitude quaternion decomposition, the purpose of transfer alignment is converted to estimate a constant quaternion. Employing special manipulations on measurement equation, velocity and attitude linear measurement equations are derived. Then the linear trans- fer alignment model for arbitrary misalignment angles is built. An adaptive Kalman filter is developed to handle modeling errors of the measurement noise statistics. Simulation results show feasibili- ty and effectiveness of the proposed method, which provides an alternative rapid transfer alignment method for airborne weapons.  相似文献   

4.
In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. However, the inter-block interference (IBI) and inter-carrier interference (ICI) in an OFDM system affect the performance. To mitigate IBI and ICI, some pre-processing approaches have been proposed based on full channel state information (CSI), which improved the system performance. A pre-processing filter based on partial CSI at the transmitter is designed and investigated. The filter coefficient is given by the optimization processing, the symbol error rate (SER) is tested, and the computation complexity of the proposed scheme is analyzed. Computer simulation results show that the proposed pre-processing filter can effectively mitigate IBI and ICI and the performance can be improved. Compared with pre-processing approaches at the transmitter based on full CSI, the proposed scheme has high spectral efficiency, limited CSI feedback and low computation complexity.  相似文献   

5.
The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM (DE-16QAM) is usually used, however, it will cause performance degradation about 3 dB as compared to the conventional 16QAM. To overcome the performance loss, a serial concatenated system with outer low density parity check (LDPC) codes and inner DE-16QAM is proposed. At the receiver, joint iterative differential demodulation and decoding (ID) is carried out to approach the maximum likelihood performance. Moreover, a genetic evolution algorithm based on the extrinsic information transfer chart is proposed to optimize the degree distribution of the outer LDPC codes. Both theoretical analyses and simulation results indicate that this algorithm not only compensates the performance loss, but also obtains a significant performance gain, which is up to 1 dB as compared to the conventional non-DE-16QAM.  相似文献   

6.
DCT domain filtering method for multi-antenna code acquisition   总被引:4,自引:0,他引:4       下载免费PDF全文
For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosine transform (DCT) to the outputs of the partial matched filter (PMF) for every antenna, the high order com- ponents in the transforming domain will be filtered, then the equalgain (EG) combination for the inverse discrete cosine transform (IDCT) reconstructed signal would be done subsequently. Thus, due to the different frequency distribution characteristics between the noise and signals, after EG combination, the energy of signals has almost no loss and the noise energy is greatly reduced. The theoretical analysis and simulation results show that the detection algorithm can effectively improve the signal-to-noise ratio of the captured signal and increase the probability of detection under the same false alarm probability. In addition, it should be pointed out that this method can also be applied to Rayleigh fading channels with moving antenna.  相似文献   

7.
The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.  相似文献   

8.
Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduling model. Therefore, the improvement of scheduling efficiency in the TDRSS can not only help to increase the resource utilities, but also to reduce the scheduling failure ratio. A model of nonhomogeneous parallel machines scheduling problems with time window (NPM-TW) is firstly built up for the TDRSS, considering the distinct features of the variable preparation time and the nonhomogeneous transmission rates for different types of antennas on each tracking and data relay satellite (TDRS). Then, an adaptive subsequence adjustment (ASA) framework with evolutionary asymmetric path-relinking (EvAPR) is proposed to solve this problem, in which an asymmetric progressive crossover operation is involved to overcome the local optima by the conventional job inserting methods. The numerical results show that, compared with the classical greedy randomized adaptive search procedure (GRASP) algorithm, the scheduling failure ratio of jobs can be reduced over 11% on average by the proposed ASA with EvAPR.  相似文献   

9.
Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot get ful observability except the up-axis accelerometer. However, the ful skewed redundant SINS (RSINS) can not only enhance the reliability of the system, but also improve the accuracy of the system, such as the initial alignment. Firstly, the observability of the system state includes attitude errors and al the inertial sensors biases are analyzed with the global perspective method: any three gyroscopes and three accelerometers can be assembled into an independent subordinate SINS (sub-SINS);the system state can be uniquely confirmed by the coupling connec-tions of al the sub-SINSs;the attitude errors and random constant biases of al the inertial sensors are observable. However, the ran-dom noises of the inertial sensors are not taken into account in the above analyzing process. Secondly, the ful-observable Kalman filter which can be applied to the actual RSINS containing random noises is established; the system state includes the position, ve-locity, attitude errors of al the sub-SINSs and the random constant biases of the redundant inertial sensors. At last, the initial self-alignment process of a typical four-redundancy ful skewed RSINS is simulated: the horizontal attitudes (pitch, rol ) errors and yaw error can be exactly evaluated within 80 s and 100 s respectively, while the random constant biases of gyroscopes and accelero-meters can be precisely evaluated within 120 s. For the ful skewed RSINS, the self-alignment accuracy is greatly improved, mean-while the self-alignment time is widely shortened.  相似文献   

10.
Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin classifier against signal-tonoise ratio (SNR), and classifies all forms of primary user's signals in a cognitive radio environment. For achieving this objective, two structures of a large margin are developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A combination of higher order statistics and instantaneous characteristics is selected as effective features. Simulation results show that the classification rates of the proposed structures are well robust against environmental SNR changes.  相似文献   

11.
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.  相似文献   

12.
This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.  相似文献   

13.
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.  相似文献   

14.
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.  相似文献   

15.
The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.  相似文献   

16.
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated.  相似文献   

17.
This paper focuses on the general case (GC) airborne bistatic synthetic aperture radar (SAR) data processing, and a new analytical imaging algorithm based on the extended Loffeld's bistatic formula (ELBF) is proposed. According to the bistatic SAR geometry, the track decoupling formulas that convert the bistatic geometry to the receiver-referenced geometry in a concise way are derived firstly. Then phase terms of ELBF are decomposed into two independent phase terms as the range phase term and the azimuth phase term in a new way. To get the focusing result, the bistatic deformation (BD) term is compensated in the two-dimensional (2- D) frequency domain, and the space-variances of the range phase term and the azimuth phase term are eliminated by chirp scaling (CS) and chirp z-transform (CZT), respectively. The effectiveness of the proposed algorithm is verified by the simulation results.  相似文献   

18.
The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.  相似文献   

19.
The acceleration of a high maneuvering target in signal processing is helpful to enhance the performance of the tracker and facilitate the classification of targets. At present, most of the research on acceleration estimation is carried out in cases of a single target with time-frequency analysis methods such as fractional Fourier transform (FRFT), Hough-ambiguity transform (HAT), and Wigner-Vil e distribution (WVD), which need to satisfy enough time duration and sampling theorem. Only one reference proposed a method of acceleration estimation for multiple targets based on modified polynomial phase transform (MPPT) in the lin-ear frequency modulation (LFM) continuous-wave (CW) radar. The method of acceleration estimation for multiple targets in the pulse Doppler (PD) radar has not been reported so far. Compressive sensing (CS) has the advantage of sampling at a low rate and short duration without sacrificing estimation performance. There-fore, this paper proposes a new method of acceleration estimation for multiple maneuvering targets with the unknown number based on CS with pulse Doppler signals. Simulation results validate the effectiveness of the proposed method under several conditions with different duration, measurement numbers, signal to noise ra-tios (SNR), and regularization parameters, respectively. Simulation results also show that the performance of the proposed method is superior to that of FRFT and HAT in the condition of multiple targets.  相似文献   

20.
This paper proposes a simple constant-stress accel- erated life test (ALT) model from Burr type XII distribution when the data are Type-I progressively hybrid censored. The maximum likelihood estimation (MLE) of the parameters is obtained through the numerical method for solving the likelihood equations. Approxi- mate confidence interval (CI), based on normal approximation to the asymptotic distribution of MLE and percentile bootstrap Cl is derived. Finally, a numerical example is introduced and then a Monte Carlo simulation study is carried out to illustrate the pro- posed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号