首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
安时法是目前估算锂离子电池荷电状态(SOC)最常用的方法之一.由于安时法不能估计初始荷电状态(SOC0),且难于准确测量库仑效率和电池可用容量变化,会造成累计误差,影响SOC估算精度.考虑锂离子电池的可用容量会随环境温度、放电电流以及电池老化等性能影响,结合开路电压法和安时法,对比实验数据进行误差分析与校正,提出了一种提高SOC估算精度的修正参数方法.仿真结果表明,用修正参数的安时法估算电池剩余电量可以减少误差,提高精度.  相似文献   

2.
鉴于卡尔曼滤波法中电池荷电状态(state of charge,SOC)的初始值一般根据开路电压法确定,传统开路电压法是通过测量电池开路电压,由电池开路电压与电池荷电状态之间的关系曲线得到电池SOC,耗时较长.本文在此基础上提出一种新的办法,通过对电池放电曲线及恢复曲线分析,结合电池等效模型,拟合出开路电压的计算公式.用放电停止后的某时刻电压估计电池的开路电压.不但解决了SOC估算中开路电压法用时长的问题,而且提高了开路电压值的准确性,进而提高了SOC估算精度.再以戴维宁模型为基础,通过电池测试平台辨识电池模型参数,并验证其可靠性,采用扩展卡尔曼滤波算法实现了对电池荷电状态的估算,状态参数SOC估算初始值由改进后的开路电压法估算出的SOC值确定.结果表明该方法解决了初始值的偏差导致的估算初期误差较大问题,提高了整体的估算精度.  相似文献   

3.
荷电状态(state-of-charge,SOC)是锂离子电池预测和健康管理非常重要的一部分。锂离子电池的SOC无法直接测量,因此本文提出了基于随机森林回归算法的锂离子电池SOC估计的方法。首先构建随机森林回归模型,使用电池电流、电池电压、电池温度作为模型的训练输入,相对应的SOC作为模型的训练输出;然后使用随机森林算法进行模型训练;最后将训练模型应用于电池SOC估计。实验结果表明,随机森林回归算法对锂离子电池荷电状态的预测最大估算误差为0.02,均方根误差为0.003 204,该方法能有效地估算锂离子电池SOC并且有很高的估计精度。该模型研究为未来电池荷电状态估算系统的模型构建提供了参考。  相似文献   

4.
根据磷酸铁锂电池的特性,从电池电化学角度分析,建立电池的等效电路模型.通过实验方法测得电池开路电压与SOC关系和电池模型的参数,利用卡尔曼滤波法来估算电池初始荷电状态(SOC0).实验与仿真表明,该算法可以有效的估算出SOC初始值,并可以将误差控制在10%之内.  相似文献   

5.
针对电动汽车用锂离子电池组,提出了一种能修正初始误差的荷电状态估算方法,即采用扩展卡尔曼滤波与安时积分的组合算法.在分析电池各种等效电路模型优缺点的基础上,选用具有双阻容并联网络的PNGV改进型电池模型,并以某锂电池为实验对象,对其进行模型参数识别.然后依据电池模型建立电池的非线性状态空间方程,并对电池开路电压与SOC的关系进行多项式拟合.恒流脉冲放电和ECE15工况下的两种实验均表明,文中算法可有效修正SOC的初始误差,并能保证估算精度.  相似文献   

6.
电动汽车用电池SOC定义与检测方法   总被引:31,自引:1,他引:31  
为建立电动汽车电池管理系统的需要 ,探求铅酸电池荷电状态 (SOC)的实时测量和估计方法 ,分析了当前 SOC定义在变电流放电情况下出现不适应的原因 ,现有各种荷电状态检测方法的特点和存在的问题。在此基础上 ,对 SOC定义进行了修正 ,提出了“标定荷电状态”和“动态荷电状态”的概念 ,使之能很好地适应电动汽车用电池在变电流状态下的实时荷电状态估计。基于修正 SOC定义的电池荷电状态检测方法和计算模型具有简便、实用和可靠性  相似文献   

7.
混合动力汽车电池管理系统SOC的评价   总被引:22,自引:3,他引:22  
为建立混合动力汽车电池管理系统的需要,探索镍氢电池荷电状态(SOC)的实时测量和估计方法,分析当前一般SOC定义在变电流放电情况下出现不适应的原因,和现有各种荷电状态估计方法存在的问题。为此,根据能量守恒原理,提出了一种新SOC的概念,使之能很好地适应混合动力汽车用电池在变电流状态下的实时荷电状态估计,并且基于新的SOC定义,建立电池荷电状态计算模型,进行仿真分析,简化计算,明确物理意义,提高了SOC的判断精度,减少混合动力汽车的复杂性,减少整车的成本,为混合动力汽车系统优化匹配提供了依据。  相似文献   

8.
电动汽车动力锂电池内部荷电状态估计是电池管理系统状态估计模块的核心,其无法通过仪器直接测量,仅能通过对电池外部电流、电压等参数进行测量并由此估计。准确的荷电状态估计对电池的寿命、容量和安全性管理至关重要。本文综述了用于电动汽车动力锂电池荷电状态估算的主要方法,根据算法差异将其分为传统的基于传感器测量的开路电压法、电流积分法和阻抗法,基于数据驱动的机器学习类算法以及基于模型的卡尔曼滤波器及粒子滤波器算法与融合类算法。深入介绍了不同估计算法的计算原理并由此分析比较了不同估计算法的计算复杂度、计算精度等特点。总结了现阶段锂离子电池荷电状态估算研究存在的问题,指出其研究趋势和未来发展方向将是更具泛化性和更高精度以及更佳实时性的多融合类估算方法。  相似文献   

9.
由于动力锂电池参数具有受外界干扰影响大、电池模型非线性的特点,现有的荷电状态(SOC)估算方法并不能完全满足精度和实时性的需要。在综合考虑模型的精确性和实际工程计算复杂程度后,提出使用经验公式模型,在模型的基础上采用无迹卡尔曼滤波(UKF)算法对电池SOC进行估算。通过对比动力锂电池放电实验得到的数据,检验算法估算效果。实验结果表明:UKF算法能够准确跟踪动力锂电池放电变化情况,对动力锂电池SOC的估算误差在2%左右,相比于传统算法在精度上有较大的提高。  相似文献   

10.
扩展卡尔曼滤波(extended Kalman filter, EKF)算法在电池荷电状态(state of charge, SOC)估算领域广泛应用。但作为一种基于模型的算法,电池模型误差影响SOC估算的精度。为了抑制电流的幅值与阶跃电流因素对模型误差的影响,提出一种动态修正观测噪声协方差的模糊双卡尔曼滤波(fuzzy dual Kalman filter, FDKF)算法。该算法首先将一阶电阻-电容(resistor-capacitance, RC)等效模型转换为自回归各态历经(autoregressive exogenous, ARX)模型的形式,用卡尔曼滤波(Kalman filter, KF)算法更新转换后模型的参数,且在SOC估算的过程中获取电流与电流变化量的数据,并通过建立模糊控制系统调整观测噪声的协方差值来抵消模型误差。结果表明:FDKF算法在某储能工况下估算误差的最大值为0.39%,小于EKF算法的3.92%和双卡尔曼滤波(dual Kalman filter, DKF)算法的1.12%,可见FDKF该算法能够有效地提升SOC估算的精度。  相似文献   

11.
为提高电动汽车的锂离子电池组荷电状态的预测精度,采用理论分析与实验相结合的方法,对传统极限学习机进行改进,在输入层与输出层间搭建直接通道,提高模型精度.针对系统噪声的时变性,应用自适应无迹卡尔曼滤波器估算电池SOC.研究结果表明:双通道ELM具有更强的泛化能力和极短的训练时间,AUKF对于锂离子电池组系统噪声的时变特性具有更强的适应能力,显著降低了SOC估算结果的平均误差和最大误差.  相似文献   

12.
针对全钒液流电池(VRB)充放电时,循环泵产生的支路电流对荷电状态(SOC)估算有影响的问题,提出了一种基于无迹卡尔曼滤波的全钒液流电池SOC估算方法。通过改进的新一代车辆伙伴关系(PNGV)等效电路模型,在考虑了电池堆极化、支路电流分流和温度对电池内阻影响的情况下,建立了VRB仿真模型。采用无迹卡尔曼滤波(UKF)算法和扩展卡尔曼滤波(EKF)算法对电池SOC分别进行估算,并与试验测量值进行对比分析。仿真结果表明:UKF算法比EKF算法更接近试验测量值,其估算误差不超过±0.02。  相似文献   

13.
针对卡尔曼滤波算法在锂离子电池荷电状态的估算中存在的稳定性差、系统噪声不确定性等问题,提出了一种基于滑模变结构的卡尔曼滤波算法对锂电池荷电状态(state of charge,SOC)进行动态估算。其基本思路是建立RC等效电路模型,并应用指数趋近律滑模变结构来改善卡尔曼滤波算法的不稳定性,从而提高SOC估算精度。仿真及实验结果表明,所提出的基于滑模变结构的卡尔曼滤波算法在锂电池SOC的估算方面具有良好的精度,误差范围在3%内。  相似文献   

14.
电池的荷电状态和健康状态是衡量电池续航和寿命的重要指标,为解决电池参数的时变性问题,提高电池 SOC(State of Charge)估算精度,减少硬件计算量,提出一种多时间尺度在线参数辨识双扩展卡尔曼滤波联合算法。 以 18650 三元锂电池为研究对象,采用基于二阶 RC 等效电路模型的多时间尺度 DEKF 算法,针对电池参数的慢变 特性和状态的快变特性进行双时间尺度在线参数辨识和 SOC 估算;通过联邦城市驾驶计划 (FUDS) 测试验证,得 出多时间尺度 DEKF 算法和传统离线辨识 EKF 算法对 SOC 估计的平均绝对误差分别为 0. 97%和 2. 46%,均方根 误差为 1. 19%和 2. 69%,容量估计值对参考值最大误差仅为 0. 007 72 Ah;实验结果表明:所提出的多时间尺度 DEKF 算法,具有更好的鲁棒性和 SOC 估算精度并能实时反应 SOH 变化趋势。  相似文献   

15.
准确估算电池荷电状态是电池管理系统的核心技术之一。为提高估算电池荷电状态精度,构建了可描述蓄电池倍率容量特性的二元荷电状态模型,并采用一种改进的粒子滤波算法对LiFePO_4电池进行荷电状态估算。从标准粒子滤波结构入手,先引入残差重采样算法,缓解了传统序贯重要性采样的粒子退化问题;而后在重采样过程中,采用Thompson-Taylor算法对粒子进行随机线性组合,并生成新粒子,可以抑制标准粒子滤波算法执行过程中的粒子贫化问题。基于这种改进的粒子滤波算法实现了对LiFePO_4电池二元荷电状态估算。实验结果表明,改进的粒子滤波算法相比无迹卡尔曼滤波算法,估算电池荷电状态具有更高的精度,估算误差不超过±0.2%。研究结果对电池管理系统估算电池荷电状态具有现实指导意义。  相似文献   

16.
为提高锂离子电池荷电状态(SOC)预测精度,提出利用回溯搜索算法(BSA)优化径向基函数(RBF)神经网络的输出权值与阈值的混合算法.通过对锂电池模型中的目标函数进行优化求解,并寻找最佳的目标权值和阈值降低预测误差,提高了RBF网络模型的预测精度.为验证算法的有效性,搭建锂离子电池的充放电实验平台获取数据并对网络进行验证,实验结果表明:混合算法相比标准RBF网络算法具有更好的SOC预测精度,并将网络输出预测误差降低到2%以内,符合锂电池荷电状态估算要求.  相似文献   

17.
现阶段影响纯电动汽车发展的重要因素之一为电池,而考量电池的一项重要指标为锂电池的荷电状态(SOC),对锂电池荷电状态进行准确估算,可为其剩余里程预测以及电池能量管理提供相应的数据支持。锂电池作为常用的充电设备,其SOC难以估测制约了新能源汽车的发展。针对锂电池荷电状态估算的问题,分析其工作原理,建立磷酸铁锂电池的模型,通过对锂电池内部的相关参数进行辨识,基于扩展卡尔曼滤波算法(EKF)和无轨迹卡尔曼滤波算法(UKF),在Matlab中运用上述算法对磷酸铁锂电池的SOC进行估算。通过仿真得出两种算法的误差,进一步表明UKF具有较高的精确度,其估算误差能够保持在4%范围之内,可满足锂离子电池荷电状态的要求。  相似文献   

18.
针对锂离子电池的荷电状态(state of charge,SOC)估算精度,设计了一种基于深度强化学习卡尔曼滤波锂离子电池SOC估计算法.首先以锂离子电池二阶RC等效电路为研究对象,应用卡尔曼滤波算法,构建了锂离子电池的离散系统数学模型;然后结合深度强化学习思想,构造了一种深度强化学习卡尔曼滤波算法,该算法利用贝叶斯规则确保最佳协方差.仿真结果表明,深度强化学习卡尔曼滤波算法对锂离子电池荷电状态的精度有较好的估计.  相似文献   

19.
SOC测量的基本方法主要有电流积分法、开路电压法等,但在电动车运行工况下,特别是混合动力、燃料电池和能量回馈型纯电动车,电池工作在频繁充放电的状态下,电量积分累积误差将使SOC预测值逐渐偏离SOC的实际值;而开路电压由于受到搁置时间、环境温度、老化程度等因素的影响,也会使SOC的测量产生较大的误差。  相似文献   

20.
为了解决传统安时-开路电压法荷电状态(state of charge,SOC)初值SOC_0误差大,忽略了估算过程中温度等影响因素对估算精度的影响等问题,提出了改进的安时积分-开路电压法:根据不同温度、循环使用次数下的实验数据,拟合出SOC与开路电压(open circuit voltage,OCV)、温度、使用次数的函数关系,从而获取准确的SOC_0;结合实验分析温度、放电倍率、使用次数对于安时积分的影响,并对其进行修正和优化。实验表明,改进的安时-开路电压法可将估算精度提高至97%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号