共查询到20条相似文献,搜索用时 15 毫秒
1.
本文描述了一种新颖的基于粒子群的多目标优化方法,即自适应多目标粒子群优化。该算法采用自适应的方法,使惯性权重和加速度系数随时间的变化而改变,从而有助于算法更有效的探索搜索空间。对三个典型多目标测试函数所作实验的结果验证了该方法的有效性和快速性。 相似文献
2.
3.
惯性权重是粒子群优化算法重要参数之一,它能够平衡算法的全局搜索能力和局部搜索能力.为了利用已知惯性权重解决某些问题的优点,提出一种多惯性权重的自适应粒子群优化算法.首先定义了K步进化度的概念,然后基于进化度,从惯性权重集中随机选择惯性权重,使得适合解决某一问题的惯性权重在迭代过程中能够多次被使用,从而提高算法性能,把该... 相似文献
4.
简化的自适应粒子群优化算法 总被引:2,自引:0,他引:2
对基本粒子群优化算法作了一些改进:通过去掉速度因子简化算法结构,引入指数下降形式的惯性权重,对全局极值进行自适应的变异操作,进而提出一种简化的带变异算子的自适应粒子群优化算法。通过与其他改进的粒子群算法的数值实验对比分析,表明提出的新算法能够有效地避免早熟收敛问题,并能较大幅度地提高收敛速度和收敛精度。 相似文献
5.
胡旺等人在2007年提出了一种简化粒子群优化算法,基于他的思想,我们给出一个简化自适应粒子群优化算法,在该算法中权重采用标准粒子群算法的自适应权重公式,但是权重的最大值根据解的进化情况不断更新,解改进的成功率的越大权重最大值增大,反之,解改进的成功率的越小权重最大值减小.最后,通过几个典型例子对给出的算法进行检验并与其... 相似文献
6.
多粒子群协同优化算法 总被引:47,自引:0,他引:47
李爱国 《复旦学报(自然科学版)》2004,43(5):923-925
提出一种多粒子群协同优化(PSCO)方法.PSCO是2层结构:底层用多个粒子群相互独立地搜索解空间以扩大搜索范围;上层用1个粒子群追逐当前全局最优解以加快算法收敛.这些粒子群含的粒子数以及粒子状态更新策略不要求相同.为改善粒子群容易陷入局部极小的弱点,提出扰动策略,当1个粒子群的当前全局最优解未更新时间大于扰动因子时,重置粒子的速度,迫使粒子群摆脱局部极小.用Rosenbrock函数等3种基准函数做优化实验表明,PSCO性能优于经典PSO,FPSO和HPSO等算法. 相似文献
7.
肖丽 《西南师范大学学报(自然科学版)》2011,36(2)
提出一种结合多样性策略的自适应粒子群优化算法,该算法在粒子群的全局优化过程中,使用根据种群搜索状态自适应调整邻域空间的局部搜索算法加强算法的局部搜索能力,并允许非优粒子具有引导种群搜索方向的可能性.在著名基准函数上的对比实验结果表明,这种混合粒子群优化算法能获得更高的搜索成功率和质量更好的解,特别在高维多峰函数优化上表现出较强的竞争力. 相似文献
8.
《兰州理工大学学报》2017,(4)
为了改善粒子群算法的性能,提出一种分层多种群的自适应粒子群算法.为了提高全局搜索和局部搜索的能力,选用了自适应更新的惯性权重和学习因子.为了防止种群多样性的丧失且加快算法的收敛速度,采用了一种分层多种群协同进化策略.最后,将新算法与其他4个算法在23个测试函数上进行了测试,结果表明,新算法能够动态地平衡算法的全局搜索和局部搜索能力,保持种群的多样性,收敛精度高. 相似文献
9.
边界处理和全局最优引导者选择操作对多目标粒子群算法的性能有重要影响,在考虑不同操作方法特征的基础上,提出了改进的自适应多目标粒子群(multiobjective particle swarm optimization,MOPSO)算法.当算法陷入局部最优时,启用交叉变异操作;当算法收敛性停滞时,轮换修剪边界处理和指数分布边界处理操作;当算法多样性停滞时,轮换反比于拥挤距离和反比于控制粒子数目的全局最优引导者概率选择操作.标准测试函数以及柔性交流输电系统(flexible AC transmission system,FACTS)装置优化配置问题的仿真结果验证了所提算法的有效性. 相似文献
10.
带自适应压缩因子粒子群优化算法 总被引:1,自引:0,他引:1
针对函数全局优化问题,提出了一种自适应压缩因子粒子群优化算法。研究的结果是对粒子群优化算法定义了一个与迭代步有关的压缩因子,随着迭代步不断增大压缩因子逐渐减小,使得在算法初期,压缩因子较大,提高算法的全局搜索能力,在算法后期,压缩因子较小,提高算法的局部搜索能力,另外,把差分进化算法中的交叉与变异思想引入到该粒子群优化算法中,改善了粒子的多样性。最后把算法应用到两类测试问题中,并与其他粒子群优化算法进行比较分析,数值结果表明,算法是可行的、有效的。该成果对全局优化问题的求解具有一定的参考价值和指导意义。 相似文献
11.
【目的】针对标准粒子群优化算法在应用中暴露出的缺点,如在迭代后期收敛速度慢、搜索精度不高、容易陷入局部最优等,提出一种基于扰动的自适应粒子群优化算法。【方法】该算法将扰动因子加入速度更新公式中,使种群搜索范围扩大;采用自适应的惯性权重,以起到平衡全局和局部寻优能力的作用;对最优粒子进行自适应的柯西变异,拓展最优粒子的搜索空间,降低粒子陷入局部最优的可能性;最后对算法进行仿真实验。【结果】新算法能够增强全局搜索能力,有效避免局部最优,具有更快的收敛速度。【结论】新算法克服了标准粒子群优化算法的缺点,为进一步研究粒子群优化算法的改进和应用提供科学依据。 相似文献
12.
多目标粒子群优化算法研究 总被引:1,自引:0,他引:1
在过去的十多年,粒子群算法对多目标优化问题的应用研究取得了较大的进展.本文首先描述多目标粒子群优化算法(MOPSO)的基本流程,然后从算法设计与应用等方面回顾MOPSO的研究进展,最后对该算法未来的研究进行了分析和展望. 相似文献
13.
提出一种基于搜索空间自适应分割的多目标粒子群优化算法, 根据粒子的搜索能力和规模与子搜索空间的体积呈多维标准正态分布变换, 精细分割搜索空间, 向划分出的子搜索空间分布粒子实现优化, 分割在迭代时持续进行, 直至获得最优解集. 实验结果表明: 该方法解决了多目标粒子群优化算法易陷入局部极值的问题; 在反向世代距离性能指标上, 该算法与一些典型的多目标粒子群优化算法相比, 其种群多样性和解的收敛性优势显著. 相似文献
14.
自适应逃逸动量粒子群算法的数据库多连接查询优化 总被引:1,自引:0,他引:1
为了提高数据库多连接查询的优化效率,针对粒子群算法存在的早熟、局部最优等缺陷,提出一种自适应逃逸动量粒子群算法的数据库多连接查询优化方法.该算法首先将遗传算法的交叉机制引入粒子群算法中,以保持粒子群的多样性,避免早熟现象出现;然后,引入动量算法平滑粒子搜索轨迹,加快粒子群的收敛速度;最后,将该算法应用于数据库多连接查询优化求解,以获得最优的数据库多连接查询方案.仿真结果表明,该算法提高了数据库查询效率,缩短了查询响应时间. 相似文献
15.
16.
17.
《天津理工大学学报》2020,(5)
快速同时定位与建图(FastSLAM)算法中的重采样过程会带来粒子退化和粒子多样性减弱问题,为了改进算法的性能、提高估计精度,针对FastSLAM算法的特点,设计了一种改进的FastSLAM算法,将FastSLAM算法中的粒子滤波部分用自适应粒子群优化算法来代替,并且引入了粒子的筛选区间,通过改善算法初期的粒子分布情况,以及采用交叉变异操作这种自适应优化策略来对粒子种群进行调整.最后在MATLAB仿真平台针对三种算法进行了对比并验证改进后算法的优越性,实验结果表明基于自适应粒子群优化的FastSLAM算法在估计精度和计算效率方面都具有较好的性能. 相似文献
18.
19.
20.
基于等级熵的自适应粒子群优化算法 总被引:1,自引:0,他引:1
分析了粒子群耗散结构的特性,提出了基于等级熵的自适应粒子群优化(EPSO)算法.在演化过程的前期,针对粒子群优化(PSO)算法具有收敛速度慢、等级熵较大等特点,EPS0采用精英多父体杂交算子来提高算法的收敛速度,使群体形成有序的耗散结构.随着熵的减少.EPSO产生一个微小的混沌给予系统一个外界的负熵,使演化过程向更优适应值的方向发展.数值实验结果表明,该算法具有收敛精度高和收敛速度快的特点,可快速有效地求解某些优化问题. 相似文献