共查询到20条相似文献,搜索用时 0 毫秒
1.
《西北大学学报(自然科学版)》2015,(4):545-550
研究洪水预测的神经网络模型,要求模型保证一定的运行效率和准确度。文中应用并行极限学习机建立的洪水预测模型预报精度达到应用水平,可以用于渭河和汉江流域的洪水预报。并行极限学习机兼有极限学习机和并行计算的优点,不需要反复迭代调整隐层节点,通过训练后即可进行预测,运行效率高,预报效果较好,具有一定的实用价值。 相似文献
2.
《四川理工学院学报(自然科学版)》2019,(5):35-41
极限学习机(Extreme Learning Machine,ELM)是一种新型的前馈神经网络,该网络由广义逆直接求出输出层权重,使得其具有误差小、速度快的优点。但针对具体问题,ELM不能自动寻找到最佳的网络结构,从而造成该算法模型针对复杂、无规律性的数据精度及稳定性较差。为了提高极限学习机的泛化能力和预测精度,提出利用粒子群优化极限学习机算法对不同数据进行预测。使用粒子群算法(particle swarm optimization,PSO)选择最优的隐含层偏差和输入权值矩阵,计算出输出权值矩阵,从而提高ELM的精度及稳定性。并通过PSO-ELM和ELM分别对复杂程度不同的汽油辛烷值和交通流量数据进行算法预测比较发现,PSO-ELM优化算法对无规律性、复杂程度高的数据可以获得更高的精度,提高了数据预测的拟合能力。实验结果表明,PSO-ELM对于非线性、无规律性等复杂特性的数据预测具有一定的可行性和有效性。 相似文献
3.
优化极限学习机的序列最小优化方法 总被引:3,自引:0,他引:3
针对传统二次规划求解方法训练优化极限学习机(OMELM)存在速度慢和效率低的问题,提出了单变量迭代序列最小优化(SSMO)算法.该算法通过在框式约束中优化拉格朗日乘子来实现目标函数的最小化:首先在初始化拉格朗日乘子中选择使目标函数值下降最大的拉格朗日乘子,将该拉格朗日乘子作为目标函数的唯一变量;然后求解目标函数的最小值并更新该变量的值;重复这个过程直到所有的拉格朗日乘子都满足二次规划问题的Karush-Kuhn-Tucker条件为止.实验结果表明:SSMO算法只需调节很少的参数值便可得到足够好的泛化性能;采用SSMO算法的OMELM方法在泛化性能上要好于采用序列最小优化算法的支持向量机方法;在随机数据集测试中,SSMO算法具有较好的鲁棒性. 相似文献
4.
传统的机器学习方法在处理蛋白质折叠类型识别问题时需要花费大量的时间来调节最佳的参数。利用一种新的极限学习机(Extreme Learning Machine,ELM)分类优化方法(Extreme Learning Machine for Classification,ELMC)对蛋白质折叠进行识别,仅需调节很少的参数值就可达到很好的测试精度。与支持向量机(Support Vector Machine,SVM)和推荐相关向量机(Relevance Vector Machine,RVM)相比,ELMC能获得更好的泛化性能,而且在寻找最优解的训练时间比较上,ELMC比SVM平均要快35倍,比RVM要快12倍。 相似文献
5.
基于极限学习机(ELM)和粒子群优化(PSO)算法,建立一个新型排水管道结构性状况评价模型。采用PSO算法优化ELM中的输入权值矩阵和隐含层偏置,改善网络参数随机生成带来的分类精度偏低的问题。以上海市洋山保税港区排水管网为例,对分类器模型进行训练测试,并与ELM分类结果进行对比分析。结果表明,PSO-ELM算法以较少的隐含层神经元节点获得更高的分类精度,参数优化提高了模型拟合能力,对于城市排水管道结构性状况分类、判断具有可行性和有效性。 相似文献
6.
《南京师大学报(自然科学版)》2017,(3)
极限学习机(Extreme Learning Machine,ELM)是一种速度快,泛化能力强的训练单隐含层前馈神经网络(Single-hidden Layer Feed-forward Neural-network,SLFN)的算法.但是在应用ELM解决实际问题时,需要先确定合适的SLFN结构.然而,对于给定的问题,确定合适的SLFN结构是非常困难的.针对这一问题,本文提出了一种集成学习方法.用该方法解决问题时,不需要事先确定SLFN的结构.提出的方法包括3步:(1)初始化一个比较大的SLFN;(2)用ELM重复训练若干个Dropout掉若干个隐含层结点的SLFNs;(3)用多数投票法集成训练好的SLFNs,并对测试样例进行分类.在10个数据集上进行了实验,比较了本文提出的方法和传统的极限学习机方法.实验结果表明,本文提出的方法在分类性能上优于传统的极限学习机算法. 相似文献
7.
极限学习机(ELM)因其运算速度快、误差小等优点而得到广泛的应用,但由于随机给定输入权值和阈值可能导致隐含层节点无效,因此,ELM通常需要增加隐含层节点数来提高预测精度,从而导致网络泛化能力不佳。为了解决上述问题,提出一种和声搜索算法的极限学习机网络(HS-ELM),采用和声搜索算法不断调整ELM输入权值和隐含层阈值矩阵选取最优以达到优化网络的目的。最后通过两种复杂度不同的非线性函数拟合加以验证。结果表明,传统ELM网络平均预测误差为0.31×10-3%和1.6%,HS-ELM的平均预测误差为0.01×10-3%和0.4%。证明和声搜索算法优化后的ELM网络在同等情况下所需的隐含层节点数和预测精度均优于传统ELM网络的。 相似文献
8.
以铝合金板带生产厂2100 mm轧机的4.1 mm厚铝薄板带轧制生产过程作为研究对象,综合分析各个因素对板形的影响规律,分别从平直度和截面形状两个方面建模和研究,采用平直度转换为与标准板形曲线的厚度差,建立了四辊轧制过程中铝薄板带板形预测模型,预测误差范围为-0.0223~0.0191 mm.为了进一步提高模型预测精度... 相似文献
9.
为对质子交换膜燃料电池(PEMFC)进行精确建模,需要准确辨识PEMFC中的未知参数.然而,PEMFC的参数辨识是一个多变量、多峰值和强耦合的非线性优化问题,传统的参数辨识方法往往得不到满意的结果.此外,不同运行条件下产生的噪声会阻碍启发式算法(MhAs)获取精确的参数.针对该问题,提出一种基于极限学习机(ELM)的MhAs策略——ELM-MhAs,以实现PEMFC的参数辨识.利用ELM对数据进行训练以降低或消除噪声,为MhAs提供更为准确可靠的适应度函数,从而保证MhAs对PEMFC参数的精确辨识.为验证该策略的可行性和有效性,在低温、低相对湿度和高温、高相对湿度两种条件下,分别对25组电压-电流数据进行不降噪、贝叶斯正则神经网络(BRNN)降噪以及ELM降噪处理,随后对比不同数据中6种MhAs和列文伯格-马夸尔特反向传播法的参数辨识结果.实验结果表明,与不降噪和BRNN降噪处理相比,应用ELM能够显著减少数据噪声对实验数据的影响,从而有效提高MhAs的参数辨识精度. 相似文献
10.
为解决因庞大的矩阵存储和计算,ELM(Extreme Learning Machines)难以应用到大规模、高维数据集的问题,提出一种基于“分而治之”策略的并行极速学习机算法.该算法利用二叉级联结构,将大规模数据集分派到多个计算节点上,并行地更新单隐层前馈网络的输出权值,且能有限步地单调收敛到最小二乘解.实验结果表明,该算法不仅泛化性能优异,并且具有非常高的加速比和并行效率. 相似文献
11.
《辽宁工程技术大学学报(自然科学版)》2016,(6)
针对采空区煤炭自然发火的预测问题,从温度、标志气体浓度以及钻孔参数3个方面选取了8个相关因素,利用Logistic回归分析从中提取出5个相对重要的因素作为预测模型的输入,运用极限学习机算法进行预测,并采用粒子群算法对极限学习机的输入权值及隐含层阈值作优化选取,以提高其泛化能力及预测精度,以此建立了PSO-ELM自然发火预测模型.选用28组训练样本和12组检验样本进行模型的预测实验,结果表明,基于Logistic回归分析筛选指标后的PSO-ELM模型有较高的预测精度,是预测采空区自然发火的一个有效方法. 相似文献
12.
山区环境中泥石流的孕育受多种因素的影响,为提高泥石流危险性的预测精度,提出一种萤火虫算法(firefly algorithm, FA)优化核极限学习机(kernel based extreme learning machine, KELM)的预测模型。首先,针对数据维度爆炸的问题,通过主成分分析(principal component analysis, PCA)数据降维,使得留有大部分致灾特征信息的因子输入训练模型;然后,使用萤火虫优化算法更新核极限学习机的参数,将四川省北川县监测数据输入优化后的预测模型,并与其他传统机器学习算法进行对比分析,验证该算法的优越性;最后,使用多种指标综合评估模型的预测效果。结果表明,FA-KELM模型能够有效地简化数据结构,提高泥石流危险性预测的准确性,为泥石流灾害预测方面的研究提供参考和借鉴。 相似文献
13.
《广西师范学院学报(自然科学版)》2018,(4)
针对极限学习机隐含层神经元个数选取的问题,提出以粒子群优化算法搜索最佳隐含层神经元个数,用极限学习机模型的测试准确率作为粒子群优化算法适应值的方法(PSO-ELM)。基于手写数字数据集digits分别对比了随机设置隐含层神经元个数的极限学习机、用粒子群算法优化的极限学习机输入权重和隐层偏置的极限学习机(PSO-ELM)、传统的BP算法以及SVM算法对手写数字的识别率,对比结果表明,粒子群优化算法得到的隐含层神经元个数在极限学习机中拥有较高的准确率。 相似文献
14.
数值预报产品释用是天气预报现代化发展方向,也是我国预报业务建设的重点之一.结合主成分分析方法从中国气象局T213资料中选取降水预报因子,利用极限学习机(Extreme Learning Machine,ELM)神经网络方法进行衢州单站逐日降水的分级预报研究.结果表明:主成分分析方法可以保留原来预报因子矩阵大部分信息并大幅降低矩阵维数,使新的预报因子之间相互正交;ELM方法不仅具有很强的历史拟合能力,独立样本所有降水预报TS评分也从T213模式预报0.3提高到0.8,特别是对大到暴雨有了较强预报能力;与相同条件下BP方法预报模型相比,ELM方法网络参数设定简单,训练速度快,历史样本的训练结果和独立样本的预报结果也都要优于BP方法. 相似文献
15.
为提高电力负荷预测的准确性,提出蝙蝠算法优化极限学习的电力负荷预测模型.首先收集电力负荷历史数据,然后采用蝙蝠算法对延迟时间和嵌入维以及极限学习的隐含层结点数目进行优化,利用电力负荷历史数据进行重构,最后采用最优隐含层结点数目的极限学习机建立电力负荷预测模型,并采用具体数据仿真测试.实验结果表明:模型建立了整体性能优异的电力负荷预测模型,提高了电力负荷的预测精度. 相似文献
16.
溶解氧浓度作为水质检测的重要指标,在环境监测、食品加工、电力电子等行业具有重要的应用。采用基于遗传算法优化的极限学习机算法,建立了电极长度和传感器的输出电流、响应时间之间关系的预测模型,优化了阳极与电解液的接触面积,验证了传感器的测量稳定性和精度。结果表明,当阳极与阴极的反应面积之比约为33时,传感器的残余电流小于0.2 μA,上升和下降响应时间均小于60 s;重复5次的实验结果表明,自制传感器具有较好的稳定性;与商用传感器相比,自制传感器测量的相对误差小于1%,表明其具有较高的测量精度。 相似文献
17.
一种基于粒子群优化的极限学习机 总被引:2,自引:0,他引:2
极限学习机(ELM)是一种新型的前馈神经网络,相比于传统的单隐含层前馈神经网络(SLFN),ELM具有速度快、误差小的优点.由于随机给定输入权值和偏差,ELM通常需要较多隐含层节点才能达到理想精度.粒子群极限学习机算法为使用粒子群算法(particle swarm optimization,PSO)选择最优的输入权值矩阵和隐含层偏差,从而计算出输出权值矩阵.一维Sinc函数拟合实验表明,相比于ELM算法和传统神经网络算法,粒子群极限学习机算法依靠较少的隐含层节点能够获得较高精度. 相似文献
18.
小波核极限学习机及其在醋酸精馏软测量建模中的应用 总被引:1,自引:0,他引:1
传统的机器学习算法一般通过迭代进行参数寻优,导致学习速度慢,且容易陷入局部最小值。针对这个问题,提出了一种基于小波核函数的极限学习机(KEML)的软测量建模方法,将支持向量机(SVM)中核函数的思想运用到极限学习机(EML)中,避免了SVM训练速度慢以及ELM算法不稳定的缺点。将KEML算法运用于醋酸精馏的软测量建模问题中,仿真实验结果验证了该算法的学习速度是SVM的92倍,且算法的精度以及模型的泛化能力都有所提高。 相似文献
19.
20.
基因表达谱数据一般来源于临床试验,而在临床试验中,试验样本的类分布情况是不确定的,这就使得表达谱数据往往具有比较明显的不平衡性.采用加权极限学习机来对不平衡基因表达谱数据进行分类,为了减少因为不平衡数据引起的分类误差,一个临时的权重被分配给每一个样本以增强少样本类的影响,同时减少多样本类的影响,进而提高肿瘤分类的准确率.实验结果表明,所提方法能够提高少样本类的识别率,从而提高分类器的总体性能. 相似文献