首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 933 毫秒
1.
以正硅酸乙酯和硝酸钙为原料,采用共沉淀法低温制备了β-CaSiO3纳米粉体.系统讨论了沉淀剂、滴加方式、合成体系温度及溶剂等因素对粉体合成的影响;采用XRD,SEM和BET等手段对β-CaSiO3粉体的物相、颗粒的形貌及粉体的比表面积进行了表征.结果表明:在25℃下,用NaOH溶液做沉淀剂,乙醇做溶剂,采用逐滴加入NaOH溶液的方式合成的沉淀前驱体比较均匀,该沉淀前驱体经过680℃煅烧便可以得到纯的β-CaSiO3;扫描照片显示,在700℃下可得到β-CaSiO3纳米颗粒结晶完整棒状粉体.  相似文献   

2.
采用共沉淀-共沸蒸馏法制备了掺杂Fe3+的TiO2纳米粉体,通过XRD和TEM等对掺杂Fe3+的TiO2纳米粉体的结构相变、晶粒粒度进行表征,研究了所得粉体的光催化活性.结果表明,用共沉淀-共沸蒸馏法制备出了分散性好的球形掺杂Fe3+的TiO2纳米粉体,热处理温度为450℃时粒径为7 nm左右,晶相为纯锐钛矿型;700℃时粒径为22 nm左右,晶相为锐钛矿型和金红石型混合相;通过对亚甲基橙的光催化降解研究,发现掺入0.1%Fe3+的TiO2粉体的催化活性较好,且经共沸处理的比未经共沸处理的具有更好的活性.  相似文献   

3.
纳米CuO/TiO2的光催化降解及其应用   总被引:2,自引:0,他引:2  
利用水热法制备了掺杂铜离子的纳米TiO2粉体,并利用XRD和TEM对其进行了表征。通过对罗丹明6G 溶液光催化降解反应,研究了固定化纳米CuO/TiO2粉体的光催化性质。实验表明,固定化纳米CuO/TiO2粉体的光催化性高于固定化纳米TiO2粉体。其机理是铜离子掺杂后提高了TiO2对氧的吸附能力,减少了纳米粒子表面光生电子与光生空穴的复合,从而加速了光降解反应。另外,将其用于污水处理中取得了满意的结果。  相似文献   

4.
用溶胶凝胶法制备了BiFeO3前驱体,经不同温度(500~800℃)、不同气氛(O2和N2)煅烧得到了BiFeO3粉体,并在O2或N2气氛条件下烧结制备了BiFeO3陶瓷。用X射线衍射对比研究了不同气氛条件下BiFeO3陶瓷的物相组成。结果显示,在O2或N2中700℃煅烧的BiFeO3粉体在N2中800℃烧结可以得到纯相的BiFeO3陶瓷。实验表明BiFeO3粉体的煅烧温度及烧结过程中采用的气氛对BiFeO3陶瓷的物相组成有重要影响。  相似文献   

5.
应用传统陶瓷制备工艺制备出Ba0.6Sr0.4TiO3(BST)粉体,在600~1 140℃范围内对粉体按不同温度煅烧,用X射线衍射分析各煅烧温度下制备出粉体的物相结构,用TG/DTA研究了粉体在煅烧过程中的晶化过程.实验结果表明:粉体在600~900℃煅烧过程中出现3个不同的中间相,900℃附近这些中间相基本消失,BST钙钛矿相开始形成,经过1 000℃煅烧2.5 h,BST粉体已经显示为完全的钙钛矿相,其晶格常数a和c分别为0.397 4 nm和0.398 4 nm,晶胞体积为0.062 9 nm3.随着煅烧温度的升高,粉体的晶格常数和晶胞体积逐渐减小.  相似文献   

6.
用两步水热法以钛酸丁酯和硅酸乙酯为原料制备了具有高光催化活性的高温稳定的TiO2-SiO2复合纳米粉体。首先在热压釜中160℃水热4小时合成TiO2纳米晶体,然后加入硅酸乙酯再160℃水热4小时形成TiO2-SiO2复合纳米粉体。以动态光散射(DLS)、差热(DSC)、傅立叶变换红外吸收光谱(FTIR)、透射电子显微镜(TEM)和X射线衍射(XRD)表征了TiO2-SiO2复合粉体。n(TiO2) / n(SiO2)摩尔比为10:1、2:1和1:1的复合粉体分别在800℃、1000℃和1200℃煅烧2小时后仍保持锐钛矿晶型,二氧化硅含量越高,高温稳定性越高。复合粉体中Ti-O-Si键是锐钛矿TiO2高温稳定的原因。红外分析表明水热合成的复合粉体没有Ti-O-Si键,800℃煅烧2小时后才形成Ti-O-Si键。 透射电镜和动态光散射粒度分析表明复合粉体呈现分散良好的近球形,颗粒大小为10-30nm。TiO2-SiO2复合材料在紫外光作用下使20mg/L甲基橙水溶液褪色的实验表明其具有优良的光催化性能,其活性和商品TiO2 P25粉体相似。800℃和1000℃煅烧2h的复合粉体的光催化活性仍保持良好的光催化活性,比同条件处理的P25高很多;1200℃煅烧2h后的复合材料只有微弱的光催化性。  相似文献   

7.
 以溶胶-凝胶法制备Fe3+,Ce3+共掺杂的纳米TiO2光催化剂.研究了不同的三价铁、三价铈掺杂量及烧结温度对日光灯照射下TiO2光催化降解甲基橙性能的影响.结果表明,Fe3+,Ce3+共掺杂能抑制TiO2晶粒的生长,并使TiO2的吸收带边明显红移约100nm;在普通日光灯下,共掺杂样品光催化效果优于单掺样品,Fe3+和Ce3+共掺杂对提高TiO2在可见光下的催化活性具有协同效应,最佳掺杂量物质的量比为n(Fe3+):n(Ce3+):n(TiO2)=0.005:0.015:1,最佳烧结温度为650℃.  相似文献   

8.
超重力反应沉淀法(HGRP)制备纳米BaTiO3的研究   总被引:5,自引:2,他引:5  
以四氯化钛和氯化钡为钛源和钡源,以NaOH溶液为沉淀剂,首次在实验室采用直接沉淀法与超重力反应器相结合的超重力反应沉淀法 (HGRP)制备了纳米BaTiO3粉体。产品经TEM、BET、XRD、AES-ICP及化学分析证明该法制备的钛酸钡粒度为30~70nm,晶型为立方相。粉体Ba/Ti摩尔比为 ( 1. 000± 0.005),且纯度较高。  相似文献   

9.
用溶胶-凝胶法制备钛(Ti)掺杂BiFeO3纳米颗粒(Ti-BiFeO3), 研究不同煅烧温度对Ti掺杂BiFeO3结构调控及光催化性能的影响, 用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 能谱分析(EDS)、 紫外-可见(UV-Vis)光谱技术对颗粒的相结构、 形貌、 原子比例、 光催化性能等进行测试及分析, 并以罗丹明-B为目标降解物, 对Ti掺杂BiFeO3光催化性能进行研究. 结果表明: Ti掺杂BiFeO3样品在不同煅烧温度均出现Bi2Fe4O9相; 煅烧温度可对Bi2Fe4O9的含量进行调控, 在650 ℃煅烧样品中含有适量的Bi2Fe4O9相, 能有效提高Ti掺杂BiFeO3的光催化活性, 且具有较高的降解活性, 60 min内降解效率达85%.  相似文献   

10.
以硝酸盐和蔗糖为原料,利用低温燃烧合成制备纳米镁铝尖晶石(MgAl_2O_4)粉体,研究了不同煅烧温度、气氛以及加热速率等因素对纳米MgAl_2O_4粉体特性的影响.结果表明:随着前驱体煅烧温度的升高,纳米MgAl_2O_4晶粒尺寸逐渐增大;在O2环境中煅烧前驱体可以降低纯MgAl_2O_4相的形成温度,促进反应物质扩散、增大晶粒尺寸.在快速升温、蔗糖与硝酸盐物质的量比为2∶1以及通入O2的条件下,在400℃下煅烧生成MgAl_2O_4相,700℃时得到单相MgAl_2O_4纳米粉体.低温燃烧合成制备纳米MgAl_2O_4粉体结晶度高、晶粒尺寸细小,呈松散的软团聚态,有利于降低MgAl_2O_4陶瓷致密化烧结温度.  相似文献   

11.
用差热—热重方法对甲酸钠的热分解过程进行了实验研究,采用滴定分析技术分析了甲酸钠在不同条件下热分解产物的组成。研究发现:在甲酸钠脱氢制草酸钠的工艺中,加热速率和反应温度是影响草酸钠收率的重要因素。纯甲酸钠在253℃熔融,在330℃左右缓慢分解为碳酸钠、氢气、一氧化碳和少量草酸钠;高于400℃发生激烈的放热反应,甲酸钠脱氢转化为草酸钠;高于440℃,草酸钠分解生成碳酸钠。因此,为了高收率的获得目的产物草酸钠,需要快速升温,生成草酸钠的最佳温度为400~420℃,过度加热将导致草酸钠深度分解。  相似文献   

12.
将8-羟基喹啉锌(ZnQ2)和8-羟基喹啉铝(AlQ3)的发光性能进行比较,筛选出ZnQ2作为掺杂发光层主体材料,与荧光染料罗丹明B(RhB)共掺杂,采用真空热蒸镀法制备有机电致发光器件(OLEDs).掺杂不同浓度RhB可以获得不同波长的光发射,得到不同的发光色调.通过对溶液态荧光光谱和器件发光光谱等特性的测量与分析,探讨了器件的能量转移及发光机理.  相似文献   

13.
Autoigniting synthesis of gel from Ba(NO3)2, TiO(NO3)2 and C6H8O7H2O aqueous solution was investigated at an initial temperature of 600℃ and tetragonal BaTiO3 nanopowder with particle size of 80nm was prepared. It is indicated that the specific surface area of the combustion product before and after calcination is 14.74 m2/g and 12.49 m2/g, respectively. The combustion wave is composed of solid phase reaction zone and gaseous phase flame reaction zone. The combustion flametemperature is 1 123 K derived from thermocouple measurement. The characteristics and densification behavior of the sol-gel autoigniting synthesized BaTiO3 nanopowder were investigated.  相似文献   

14.
以六水合硝酸锌和脲为原料,经水浴加热,高温煅烧,获得具有蒲公英状的氧化锌.通过X射线粉末衍射仪、扫描电子显微镜、透射电子显微镜和BET对氧化锌的结构和形貌进行了表征,以及采用紫外漫反射仪对氧化锌的紫外吸收进行了测定,并研究了所制备的氧化锌对溶液中罗丹明B的光催化降解性能.实验结果表明:制备的氧化锌具有分级结构,对罗丹明B具有较好的光催化性能,光照反应1h,对罗丹明B(1.0×10-5 mol/L)的降解率达98.97%.  相似文献   

15.
采用机械研磨方法制备前驱体,再将前驱体进行煅烧得到NiFe2O4纳米粉.重点研究了煅烧温度对粉体物相和形貌的影响以及固相反应过程与机理.结果表明:煅烧过程中晶粒长大活化能为12.08 k J·mol-1,主要以界面扩散为主;煅烧温度为700℃时粉体团聚严重,颗粒之间存在片状非晶态化合物,结晶度低;750℃煅烧1 h得到的NiFe2O4纳米粉物相单一,粒径分布在35~85 nm之间,温度过高时晶粒明显长大;机械研磨洗涤后前驱体主要由Fe2O3,NiO和NiFe2O4组成,反应产物结晶度低,反应不完全;盐颗粒的存在能抑制晶粒生长,减小产物粒径.  相似文献   

16.
影响纳米锌铝复合氧化物紫外吸收性能的因素   总被引:1,自引:2,他引:1  
在自制全返混液膜反应器中,采用共沉淀法,制备了粒径为30~90 nm的纳米锌铝复合氧化物.研究了Zn/Al摩尔比、锌铝复合氧化物前体的晶体结构完整性、煅烧温度及升温速率对锌铝复合氧化物紫外吸收性能的影响.结果表明,锌铝复合氧化物紫外吸收性能与其晶体结构密切相关.Zn/Al摩尔比提高、锌铝复合氧化物前体的晶体结构完整有利于增强紫外吸收性能;煅烧温度在400~600 ℃范围时,随着煅烧温度的升高锌铝复合氧化物紫外吸收性能增强,而在700~900 ℃范围时,煅烧温度升高紫外吸收性能降低;升温速率变化对锌铝复合氧化物紫外吸收性能影响不明显.  相似文献   

17.
以AgNO2, 4,4′-联吡啶和2,5-噻吩二甲酸为反应物,合成新型的配位聚合物[Ag2(bpy)2(H2O)](tdc)•6H2O(bpy=4,4′-bipyridine, tdc=thiophene-2,5-dicarboxylate)。通过红外、元素分析和单晶X-射线表征该配位聚合物的结构。结果表明,该化合物属三斜晶系,P(-1)空间群;晶胞参数a = 0.70456 nm,b = 1.1415 nm,c = 1.8024 nm, a = 87.361 º,β = 88.838 º,γ = 72.414 º,V = 1.3803 nm3,和Z = 2;9648个独立衍射点(R(int) = 0.0636),残差因子R1 = 0.0462,wR2 = 0.1122。此配位聚合物在紫外光区(350~320 nm)有较强的吸收。其在剑桥晶体学数据库的编号为290518。  相似文献   

18.
超声波-化学沉淀法制备纳米二氧化锡   总被引:6,自引:0,他引:6  
在超声波作用下通过SnCl2·2H2O与NH3·H2O反应制备了纳米SnO2粉体·在pH=5 0条件下,得到的SnO2中不含杂相且接近理论产率·煅烧SnO2粉体可使其晶型由非晶转变为晶态·纳米SnO2粒径生长与煅烧温度关系密切,温度升高,煅烧后得到的SnO2粉体粒径相应增大,二者符合d=0.2027t-30.7750的关系,而煅烧时间对粒径生长的影响不大·实验发现,350℃煅烧15min是SnO2晶型转变的合适条件,得到了20nm左右的球形SnO2晶体·  相似文献   

19.
通过种分法制备了易溶氢氧化铝,研究了分解原液浓度、晶种数量和分解温度等实验条件对铝酸钠溶液分解率及氢氧化铝酸溶性的影响.研究结果表明,其最佳条件是:分解初温为40℃,分解终温为30℃,分解原液的Al2O3浓度为130g/L,晶种数量为0.4g/L,产品酸溶率在90%以上.并通过SEM和XRD对粒子的形态和晶体结构进行了表征.  相似文献   

20.
用部分中和法制备超细二氧化钛粉体   总被引:2,自引:0,他引:2  
采用部分中和法制备超细TiO2粉体,通过TEM、XRD和TG-DTA对产品进行了表征,指出水合TiO2在煅烧过程中逐步失去游离水和化合水,再形成TiO2结晶,且随着煅烧温度的上升,颗粒的粒度迅速增大.在600℃以下煅烧时所形成的TiO2颗粒为锐钛型,在800*!℃时完全转化为金红石型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号