首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sn Co alloy nanowires were successfully electrodeposited from Sn Cl2-Co Cl2-1-ethyl-3-methylimidazolium chloride(EMIC) ionic liquid without a template. The nanowires were obtained from the molar ratio of 5:40:60 for Sn Cl2(25)Co Cl2(25)EMIC at-0.55 V and showed a minimum diameter of about 50 nm and lengths of over 20 μm. The as-fabricated SnCo nanowires were about 70 nm in diameter and featured a Sn/Co weight ratio of 3.85:1, when used as an anode for a Li-ion battery, they presented respective specific capacities of 687 and 678 m Ah·g~(-1) after the first charge and discharge cycle and maintained capacities of about 654 m Ah·g~(-1) after 60 cycles and 539 m Ah·g~(-1) after 80 cycles at a current density of 300 m A·g~(-1). Both the nanowire structure and presence of elemental Co helped buffer large volume changes in the Sn anode during charging and discharging to a certain extent, thereby improving the cycling performance of the Sn anode.  相似文献   

2.
综述了锂离子电池锑基负极材料——金属锑簿膜、锑基合金、锑基复合氧化物的研究进展,重点介绍了锑基合金材料的不同制备方法,并阐述了锑基负极材料的研究进展与开发前景。  相似文献   

3.
表面修饰的天然石墨用作锂离子电池嵌锂阳极   总被引:2,自引:0,他引:2  
针对天然石墨阳极存在的首次充放电效率低这一应用问题,提出了采用聚合物表面修饰石墨的新方法.结果发现:通过在天然石墨表面修饰聚二甲基硅氧烷,加速了石墨阳极表面钝化膜的形成,降低了电极第一周充放电时的不可逆容量损失,从而提高了电极的首次充放电效率.当石墨表面的聚二甲基硅氧烷修饰量为5%时,电极在保持可逆容量基本不变的情况下,第一周充放电效率提高了13%.此外修饰石墨电极的循环性能也得到了显著改善.  相似文献   

4.
To prepare an anode material for Li-ion batteries with high discharge capacity and good cycling stability, disordered carbon (DC) formed by calcinations of 3,4,9,10-perylenetetracarboxylic dianhydride was modified via an acid treatment using a mixture of HNO3 and H2SO4. The modified disordered carbon (MDC) was characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) analysis, and scanning electron microscopy (SEM). FTIR spectra confirm the successful introduction of carbonyl groups onto the DC surface. Some pores appear in the columnar structure of MDC, as observed in SEM micrographs. Li+ ions intercalation/deintercalation is facilitated by the modified morphology. Electrochemical tests show that the MDC exhibits a significant improvement in discharge capacity and cycling stability. These results indicate that the MDC has strong potential for use as an anode material in Li-ion batteries.  相似文献   

5.
以CoSO4·6H2O和NaOH为原料,采用共沉淀法,在一定温度下反应一段时间得到深棕色产物.利用X射线衍射(XRD),透射电镜(TEM),热分析(TG-DTA),恒流充放电测试等方法对所产物结构,形貌,大小等进行分析表征及电化学性能测试.实验结果表明,产物为分散均匀的200nm CoOOH颗粒,且该材料作为锂离子电池负极材料,首圈放电容量达到2 100mAh·g-1,循环20圈后,放电容量保持800mAh·g-1.此方法合成的纳米尺寸的CoOOH作为锂离子电池负极材料具有较好的电化学性能.  相似文献   

6.
Silicon anodes are considered to have great prospects for use in batteries; however, many of their defects still need to be improved. The preparation of hybrid materials based on porous carbon is one of the effective ways to alleviate the adverse impact resulting from the volume change and the inferior electronic conductivity of a silicon electrode. Herein, a chain-like carbon cluster structure is prepared, in which MOF-derived porous carbon acts as a shell structure to integrally encapsulate Si nanoparticles, and CNTs play a role in connecting carbon shells. Based on the exclusive structure, the carbon shell can accommodate the volume expansion more effectively, and CNTs can improve the overall stability and conductivity. The resulting composite reveals excellent rate capacity and enhanced cycling stability; in particular, a capacity of 732 mA·h·g?1 at 2 A·g?1 is achieved with a reservation rate of 72.3% after cycling 100 times at 1 A·g?1.  相似文献   

7.
通过冻干-煅烧合成了一氧化锰/石墨烯(MnO/rGO)复合材料,并将其用作锂离子电池负极材料.在500 mA·g-1的电流密度下,MnO/rGO复合材料表现出高达830 mAh·g-1的可逆容量,且在充放电循环160圈后,其可逆容量依然高达805 mAh·g-1.倍率测试结果显示,循环225圈后,在2.0 A·g-1的电流密度下,其可逆容量高达412 mAh·g-1.复合材料中的石墨烯在提高材料导电性的同时有效地缓解了一氧化锰充放电过程中的体积膨胀.通过对比容量-电压的微分分析,发现复合材料超出一氧化锰理论容量的部分是由形成了更高价态的锰引起的.MnO/rGO复合材料比纯一氧化锰(p-MnO)更容易出现高价态的锰,可能是因为rGO上残留的氧为电极反应提供了额外所需的氧源.该一氧化锰/石墨烯复合材料因其简单绿色的合成过程及优异的电化学性质,有望在未来的锂电负极中得到广泛的实际应用.  相似文献   

8.
Li-ion batteries(LIBs) have demonstrated great promise in electric vehicles and hybrid electric vehicles. However, commercial graphite materials, the current predominant anodes in LIBs, have a low theoretical capacity of only 372 m Ah·g~(-1), which cannot meet the everincreasing demand of LIBs for high energy density. Nanoscale Si is considered an ideal form of Si for the fabrication of LIB anodes as Si–C composites. Synthesis of nanoscale Si in a facile, cost-effective way, however, still poses a great challenge. In this work, nanoscale Si was prepared by a controlled magnesiothermic reaction using diatomite as the Si source. It was found that the nanoscale Si prepared under optimized conditions(800°C, 10 h) can deliver a high initial specific capacity(3053 m Ah·g~(-1) on discharge, 2519 m Ah·g~(-1) on charge) with a high first coulombic efficiency(82.5%). When using sand-milled diatomite as a precursor, the obtained nanoscale Si exhibited a well-dispersed morphology and had a higher first coulombic efficiency(85.6%). The Si–C(Si : graphite = 1:7 in weight) composite using Si from the sand-milled diatomite demonstrated a high specific capacity(over 700 m Ah·g~(-1) at 100 m A·g~(-1)), good rate capability(587 m Ah·g~(-1) at 500 m A·g~(-1)), and a long cycle life(480 m Ah·g~(-1) after 200 cycles at 500 m A·g~(-1)). This work gives a facile method to synthesize nanoscale Si with both high capacity and high first coulombic efficiency.  相似文献   

9.
Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). The alloy exerts excellent cycling durability (the capacity can be maintained at 328.3 mA·h·g?1 after 100 cycles for SIBs and 260 mA·h·g?1 for PIBs) and rate capability (199 mA·h·g?1 at 5 A·g?1 for SIBs and 148 mA·h·g?1 at 5 A·g?1 for PIBs) because of the smooth electron transport path, fast Na/K ion diffusion rate, and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy. This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries, and it also introduces broad application prospects for other electrochemical applications.  相似文献   

10.
Sodium ion(Na+)batteries have attracted increased attention for energy storage owing to the natural abundance and low cost of sodium.Herein,we report the synthesis of mesoporous carbon with large pores as anode for Na-ion batteries.The mesoporous carbon was obtained by carbonization and dense packing of 50 nm resorcinol and formaldehyde spheres synthesized through an extension Sto¨ber method.Our work demonstrates that replacement of lithium by sodium using large pore carbon as anode might offer an alternative route for rechargeable batteries.  相似文献   

11.
Fe3O4 is an attractive conversion reaction- based anode material with high theoretical capacity (928 mA h g^-1). However, the poor cycling and rate per- formance hinder its applications in Li-ion batteries. In this work, we report an effective strategy to synthesize three- dimensionally macroporous graphene-supported Fe3O4 hybrid composite. Benefiting from advantage of the special structure, the hybrid composite exhibits excellent Li^+ stor- age performance, delivering a high reversible capacity of 980 mA h g^-1at the current density of 4 A g^-1 even after 470 cycles and ultrahigh rate capability (293 mA h g^- 1 even at current density of 20 A g^-1).  相似文献   

12.
Reducing the dimensions of electrode materials from the micron to the nanoscale can have a profound influence on their properties and hence on the performance of electrochemical devices,e.g.Li-ion batteries,that employ such electrodes.TiO2(B) has received growing interest as a possible anode for Li-ion batteries in recent years.It offers the possibility of higher energy storage compared with the commercialized Li4Ti5O12.Bulk,nanowire,nanotube,and nanoparticle morphologies have been prepared and studied.However,to date these materials have not be compared in one article.In the current review we first summarize the different synthesis methods for the preparation of nanostructured TiO2(B);then present the effects of size and shape on the electrochemical properties.Finally TiO2(B) with nanometer dimensions exhibit a higher capacity to store Li,regardless of rate,due to structural distortions inherent at the nanoscale.  相似文献   

13.
Hollow bismuth ferrite nanofibers were fabricated via simple electrospinning process,and the storage properties of Na-ions were investigated by atmospheric pressure X-ray photoelectron spectrum(APXPS) and Synchrotron Radiation.The results show that the hollow bismuth ferrite nanotubes demonstrate impressive sodium storage properties and good cycling stability that the specific capacity can exceed 500 mA h g~(-1) and the cycle number reaches several hundred cycles.The graphene-coated bismuth ferrite nanotubes exhibit a specific capacity of600 mAhg~(-1)and a 89% capacity retention after 200 cycles.The present strategy can be a significant step to fabricate hollow perovskite oxides and serve as sodium ion batteries.  相似文献   

14.
Aromatic carbon coated tin composites (A/Sn) have been prepared by thermal decomposition of the stannous 1,8-naphthalenedicarboxylate precursors, which is a reformative preparation method. Sugar carbon coated tin composites (S/Sn) also are prepared as a contrast with the A/Sn composites. The morphology and composition of the products were characterized by Scanning Electricity Microscopy (SEM) and X-Ray Diffraction (XRD). Their electrochemical performance as anode materials for lithium ion batteries were investigated; the results indicated that these materials exhibited good performance, and the cycle stability of A/Sn composites is especially superior to the S/Sn composites due to its special carbon resource.  相似文献   

15.
以二乙烯基苯(DVB)为交联剂、偶氮二异丁腈(AIBN)为引发剂、聚乙烯吡咯烷酮(PVP)为模版剂,通过自组装,制备聚苯乙烯微球。经过氧化和高温炭化转换成硬炭微球。考察了硬炭微球作为锂离子负极材料的电化学性能。结果表明硬炭微球的首次放电比容量为505 mA·h/g,40次循环后保持在304 mA·h/g。  相似文献   

16.
特种石墨尾料具有低灰分、较高的石墨化度和较大的碳微晶尺寸等特点,有望用于锂离子电池的负极材料。通过XRD、SEM和比表面分析仪对特种石墨尾料石墨化处理前后样品的微观结构进行了分析对比,评价了其电化学性能,探讨了特种石墨尾料用于锂离子电池负极材料的可行性及对其进行石墨化处理的必要性。结果表明,特种石墨尾料可以直接用作低端负极材料的生产原料;经过高温石墨化处理后,负极材料的循环性能、首次库仑效率和可逆容量均得到不同程度提升,应用范围进一步扩大。  相似文献   

17.
锡基复合氧化物负极材料的研究   总被引:1,自引:1,他引:1  
采用共沉淀法制备了SnFeO2.5和SnPbO2两种锡基复合氧化物粉末.XRD分析表明,这两种锡基复合氧化物在26°~28°处都有波峰,属无定形结构;SEM的形貌观察发现SnFeO2.5颗粒分层紧密堆积、团聚在一起,SnPbO2颗粒为棱柱状、表面光滑.将其分别作为Li+电池负极材料的活性物质,利用恒电流电池测试仪研究它们的电化学性能,发现这两种锡基复合氧化物都有较高的电化学容量.  相似文献   

18.
A skutterudite-related antimonide, CoFe3Sb12,was prepared with vacuum melting.XRD analysis showed the material contained Sb, FeSb2, CoSb2 and CoSb3 phases.The electrochemical properties of the ball-milled CoFe3Sb12-10wt% graphite composite were studied using pure lithium as the reference electrode. A maximal lithium inserting capacity of about 860 mAh/g was obtained in the first cycle.The reversible capacity of the material was about 560mAh/g in the first cycle and decreased to ca.320 mAh/g and 250 mAh/g after 10 and 20 cycles respectively.Ex-situ XRD analyses showed that the antimonides in the pristine material were decomposed after the first discharge and that antimony was the active element for lithium to insert into the host material.  相似文献   

19.
介绍了一种通过简单的室温搅拌合成具有多孔结构的 Co-Mn 金属有机框架(metal-organic-framework, MOF)材料的方法, 并对制备的双金属 MOF 进行气相硫化, 得到多孔 CoS介绍了一种通过简单的室温搅拌合成具有多孔结构的Co-Mn金属有机框架(metalorganic-framework,MOF)材料的方法,并对制备的双金属MOF进行气相硫化,得到多孔CoS_2/MnS双金属复合材料.与相同方法制备的单金属MnS与CoS2材料对比发现,CoS_2/MnS双金属复合材料表现出了类似花瓣状的多孔片状结构以及更小的粒径,在作为锂离子电池电极材料使用时表现出了最好的储锂性能.这主要归因于类花瓣状的多孔结构:一方面为锂离子提供了更短的传输路径以及更多的接触位点;另一方面也缓解了材料锂化/去锂化过程的体积变化.此外,两种金属硫化物的有机结合也抑制了材料在循环过程中由于体积变化而导致的容量快速衰减.最后,MOF有机配体衍生的碳骨架也为增强材料的导电性起到了积极的作用.  相似文献   

20.
A new asymmetric sulfonium-based ionic liquid, 1-butyldimethylsulfonium bis(trifluoromethylsulfonyl) imide (S114TFSI), was developed as electrolyte material for lithium secondary battery. Its cathodic potential was a little more positive against the Li/Li+, so vinylene carbonate (VC) was added into the LiTFSI/S114TFSI ionic liquid electrolyte to ensure the formation of a solid electrolyte interface (SEI), which effectively prevented the decomposition of the electrolyte. The properties of the Li/LiMn2O4 cell containing S114TFSI-based electrolyte were studied and the cycle performances were compared to those with a conventional organic electrolyte (1 mol/L LiPF6/DMC:EC=1:1(w/w)) at room temperature. Electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) were conducted to analyze the mechanisms affecting the cell performances at different temperatures. The lithium secondary bat- tery system, using the above ionic liquid electrolyte material, shows good cycle performances and good safety at room temperature, and is worthwhile to further investigate so as to find out the potential application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号