首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg_2Si particles(from 28 to 12 μm), the spacing of eutectic Mg_2Si(from 3 to 0.5 μm), and the grains of AA6061 alloy(from 102 to 22 μm). The morphology of the eutectic Mg_2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg_2Si phase and the grains in the Al–Mg_2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al–Mg_2Si composites and AA6061 alloy billets.  相似文献   

2.
In the present work, the friction stir back extrusion (FSBE) process was used as a novel method for the fabrication of AA6063 aluminum alloy wire. Scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), tensile and hardness tests were performed. The FSBE via the rotational speed of 475 r/min resulted in fine equiaxed grains, and the mean grain size decreased from 179.0 μm to 15.5 μm due to the occurrence of dynamic recrystallization (DRX). Heat generated by the FSBE changed the size and volume fraction of the Mg2Si precipitated particles. The minimum particle size and maximum volume fraction obtained in the sample were processed by rotational speeds of 475 and 600 r/min, respectively. The 475-r/min sample had the maximum hardness value due to having the lowest grain size (i.e., 15.5 μm) and the presence of many fine Mg2Si precipitates in the aluminum matrix. With increasing rotational speed up to 600 r/min, the hardness decreased, owing to the growth of both grains and precipitates. The FSBE process with a rotational speed of 475 r/min increased the tensile strength (from 150 to 209 MPa) and ductility (from 21.0% to 30.2%) simultaneously.  相似文献   

3.
4.
In this paper, a large-sized ingot of Mg-9Gd-3Y-1.5Zn-0.5Zr (wt%) alloy with a diameter of 600 mm was successfully prepared by the semi-continuous casting method. The alloy was subsequently annealed at a relatively low temperature of 430℃ for 12 h as a homogenization treatment. The microstructure and room-temperature mechanical properties of the alloy were investigated systematically. The results show that the as-cast alloy contained a mass of discontinuous lamellar-shaped 18R long-period stacking ordered (LPSO) phases with a composition of Mg10ZnY and an α-Mg matrix, along with net-shaped Mg5(Y,Gd) eutectic compounds at the grain boundaries. Most of the eutectic compounds dissolved after the homogenization treatment. Moreover, the amount and dimensions of the lamellar-shaped LPSO phase obviously increased after the homogenization treatment. The structure of the phase transformed into 14H-type LPSO with composition Mg12Zn(Y,Gd). The mechanical properties of the heat-treated large-sized alloy ingot are uniform. The ultimate tensile strength (UTS) and tensile yield strength (TYS) of the alloy reached 207.2 MPa and 134.8 MPa, respectively, and the elongation was 3.4%. The high performances of the large-sized alloy ingot after the homogenization treatment is attributed to the strengthening of the α-Mg solid solution and to the plentiful LPSO phase distributed over the α-Mg matrix.  相似文献   

5.
In the present paper, multiple reinforcements TiO2 and fly ash were utilized for the fabrication of AA7075 matrix based hybrid composites using stir casting technique followed by hot forging. In hybrid composites, the fly ash content was fixed to 3 wt% while that of TiO2 was varied from 2.5 to 10 wt%. Scanning electron microscopy images revealed homogenous dispersion of both the reinforcements in AA7075 matrix.Compression test was conducted to study the mechanical behaviour of hybrid composites. The hybrid composites showed increase in compressive strength with the incorporation of multiple reinforcements and further increased with the increase in the weight fractions of TiO2 particles. The coefficient of thermal expansion was measured between 50 and 250 ℃ with a high precision thermal mechanical analyser. The thermal coefficient of hybrid composites decreased with the addition of TiO2 and fly ash. However a slight decrease in thermal conductivity of hybrid composites was observed when compared to that of AA7075 alloy.  相似文献   

6.
The effect of Ca addition on the elemental composition, microstructure, Brinell hardness and tensile properties of Al-7Si-0.3Mg alloy were investigated. The residual content of Ca in the alloy linearly increased with the amount of Ca added to the melt. The optimal microstructure and properties were obtained by adding 0.06wt% Ca to Al-7Si-0.3Mg alloy. The secondary dendrite arm spacing (SDAS) of the primary α phase decreased from 44.41 μm to 19.4 μm, and the eutectic Si changed from coarse plates to fine coral. The length of the Fe-rich phase (β-Al5FeSi) decreased from 30.2 μm to 3.8 μm, and the Brinell hardness can reach to 66.9. The ultimate tensile strength, yield strength, and elongation of the resulting alloy increased from 159.5 MPa, 79 MPa, and 2.5% to 212 MPa, 86.5 MPa, and 4.5%, respectively. The addition of Ca can effectively refine the primary α phase and modify the eutectic Si phase, likely because Ca enrichment at the front of the solid-liquid interface led to undercooling of the alloy, reduced the growth rate of the primary α phase, and refined the grain size. Also, it could increase the latent heat of crystallization, undercooling, and the nucleation rate of eutectic Si, which was beneficial to the improvement of the morphology of eutectic Si.  相似文献   

7.
The effect of cerium (Ce) addition on the eutectic Si, β-Al5FeSi phase, and the tensile properties of A380 alloy specimens prepared by squeeze-casting were studied by optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The experimental results showed that Ce more effectively modified the eutectic Si and refined the β-Al5FeSi. The refinement effect significantly increased under a specific pressure of 100 MPa with the addition of Ce from 0.1wt% to 0.9wt%. In contrast, the average length and the aspect ratio of the eutectic Si and β-Al5FeSi exhibited their optimal values when the content of the added Ce was greater than 0.5wt%. Needle-like Al8Cu4Ce was precipitated with the addition of excessive Ce; hence, the mechanical properties of A380 gradually decreased with increasing Ce content in the range from 0.3wt% to 0.9wt%.  相似文献   

8.
Graphene-reinforced aluminum (Al) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al composite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphologies, chemical compositions, and microstructures of the graphene and the graphene/Al composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.  相似文献   

9.
The effects of heat treatment on the microstructure and mechanical properties of ZA84 (Mg-8Zn-4Al-0.25Mn) alloy were investigated. The results indicate that the as-cast microstructure of the alloy is mainly composed of α-Mg matrix and two different morphologies of precipitates (continuous and quasi-continuous Mg32(Al,Zn)49 phases and isolated Mg5Al2Zn2 phases). After solid solution treatment at 345℃, the Mg32(Al,Zn)49 phases change from continuous and quasi-continuous net to disconnected acute angle shape, and parts of second phases sphericize. The optimum heat treatment condition for the alloy is solution treatment at 345℃ for 48 h and water quenching, then aging treatment at 200℃ for 12 h and atmosphere cooling. Under the optimum condition, the ultimate tensile strength and yield strength of the alloy can be imoroved, but the elongation is not effected much bv heat treatment.  相似文献   

10.
The influences of 2.5wt% Mn addition on the microstructure and mechanical properties of the Cu-11.9wt%Al-3.8wt%Ni shape memory alloy (SMA) were studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimeter (DSC). The experimental results show that Mn addition influences considerably the austenite-martensite transformation temperatures and the kind of martensite in the Cu-Al-Ni alloy. The martensitic transformation changes from a mixed xed β1→β'1+γ'1 transformation to a single β1→β'1 martensite transformation together with a decrease in transformation temperatures. In addition, the observations reveal that the grain size of the Cu-Al-Ni alloy can be controlled with the addition of 2.5wt% Mn and thus its mechanical properties can be enhanced. The Cu-Al-Ni-Mn alloy exhibits better mechanical properties with the high ultimate compression strength and ductility of 952 MPa and 15%, respectively. These improvements are attributed to a decrease in grain size. However, the hardness decreases from Hv 230 to Hv 140 with the Mn addition.  相似文献   

11.
The modification effects of alloying element Sb and heat treatment on Al-15.5wt%Mg2Si alloy were investigated by Olympus microscopy (OM), scanning electron microscopy and energy disperse spectroscopy (SEM-EDS), and X-ray diffraction (XRD). It is found that Sb plays a significant role in shaping primary Mg2Si phase and eutectic Mg2Si phase in Al-15.5wt%Mg2Si alloy. The Sb addition of about 1.0wt% makes the resultant alloy show the finest primary Mg2Si phase and the eutectic Mg2Si phase with well distribution. But further increasing the Sb content decreases the amount of primary Mg2Si phase, and some segregated phases appear at regions between the grains. In addition, heat treatment can modify the microstructural feature of Sb-modified Al-15.5wt%Mg2Si alloy in terms of obviously shortening the nodulizing time of primary Mg2Si phase and eutectic Mg2Si phase.  相似文献   

12.
In this study, we investigated the effect of the addition of Sr (0wt%, 0.1wt%, 0.2wt%, and 0.3wt%) on the microstructure and corrosion behavior of Al3Ti/ADC12 composite by optical microscopy, X-ray diffraction, scanning electron microscopy, and energy diffraction spectroscopy. The results reveal that the α-Al phases were nearly spherical and 40 μm in size and that the eutectic Si phases became round in the composite when the Sr content reached 0.2wt%. The Al3Ti particles were distributed uniformly at the grain boundary. The results of the corrosion examination reveal that the Al3Ti/ADC12 composite exhibited a minimum corrosion rate of 0.081 g·m–2·h–1 for an Sr content of 0.2wt%, which is two thirds of that of unmodified composite (0.134 g·m–2·h–1). This improved corrosion resistance was due to galvanic corrosion, which resulted from the low area ratio of the cathode to anode regions. This caused a low-density corrosion current in the composite, thereby yielding optimum corrosion resistance.  相似文献   

13.
Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃. The temperature (t) and the addition of Al2O3 (W(Al2O3)), Sm2O3 (W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3)=3wt%, W(Al2O3):W(Sm2O3)=7:3, and a temperature of 965 to 995℃, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.  相似文献   

14.
为了研究铝基复合材料的凝固组织和力学性能,采用超声波搅拌的方法制备了原位自生Mg2Si/Al基复合材料.利用X射线衍射仪(XRD)、金相显微镜(OM)和扫描电子显微镜(SEM)分析其微观形貌,并通过硬度检测和拉伸试验测试其力学性能.结果表明:超声波搅拌不但能够细化初生Mg2Si颗粒,改变凝固组织形貌,而且具有除气除杂功能,二者共同提高了Mg2Si/Al基复合材料的力学性能;经过超声波搅拌的Mg2Si/Al基复合材料与未经过超声波搅拌的Mg2Si/Al基复合材料相比,抗拉强度与伸长率总体呈上升趋势,其断口形貌均为准解理面.在超声时间为40 s时,抗拉强度和伸长率达到最大值,分别为201 MPa和5.63%,相比未超声处理的Mg2Si/Al基复合材料的抗拉强度和伸长率,分别增长了139.29%和178.71%;复合材料的硬度先升高后降低,超声作用时间为30 s时硬度最佳,为116.96(HB).  相似文献   

15.
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu71Al18Mn11 shape memory alloy (SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu71Al18Mn11 SMA with aging temperature and aging time are described by the Austin–Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ·mol?1. Finally, a columnar-grained Cu71Al18Mn11 SMA with both excellent superelasticity (5%–9%) and high martensitic transformation critical stress (443–677 MPa) is obtained through the application of the appropriate aging treatments.  相似文献   

16.
Satisfying the mold-flux performance requirements for high-speed continuous casting necessitates the development of a new non-Newtonian-fluid mold flux with shear-thinning behavior, i.e., a mold flux whose viscosity is relatively high under lower shear rates and relatively low under higher shear rates. In this work, a mold flux that exhibits shear-thinning behavior was developed by adding different amounts of Si3N4 to the CaO-SiO2-CaF2 mold flux. The shear-thinning behavior was investigated using a rotational viscometer. In addition, the microstructure of the newly prepared slags was studied by high-temperature Raman spectroscopy and X-ray photoelectron spectroscopy. The results showed that the mechanism of shear-thinning was attributable to a temporary viscosity loss caused by the one-way shear stress, whereas the corresponding magnitude of shear-thinning was closely related to the degree of polymerization (DP). Finally, the non-Newtonian fluid mold flux was used for laboratory casting tests, which revealed that the mold flux could reduce slag entrapment and positively affect the continuous casting optimization.  相似文献   

17.
In an electromagnetic field, the morphology of a binary faceted-faceted (FF) Ni31Si12-Ni2Si eutectic microstructure and the alloy’s mechanical properties were investigated. Hardness experiments demonstrated that the solidified ingots were significantly strengthened, and the hardness was improved to 63.1 and 786.6 on the Rockwell hardness C and Vickers hardness scales, respectively. Tests of friction and wear in stirred FF eutectic alloys showed excellent anti-fatigue and anti-adhesion wear performance. Alloy changed from an anomalous microstructure to a refined quasi-regular structure, and there was an increase in the lamellar microstructure fraction. The formation process of the refined quasi-regular microstructure and the resulting mechanical properties were investigated.  相似文献   

18.
Oxide eutectic ceramic in situ composites have attracted significant interest in the application of high-temperature structural materials because of their excellent high-temperature strength, oxidation and creep resistance, as well as outstanding microstructural stability. The directionally solidified ternary Al2O3/YAG/ZrO2 hypereutectic in situ composite was successfully prepared by a laser zone remelting method, aiming to investigate the growth characteristic under ultra-high temperature gradient. The microstructures and phase composition of the as-solidified hypereutectic were characterized by using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The results show that the composite presents a typical hypereutectic lamellar microstructure consisting of fine Al2O3 and YAG phases, and the enriched ZrO2 phases with smaller sizes are randomly distributed at the Al2O3/YAG interface and in Al2O3 phases. Laser power and scanning rate strongly affect the sample quality and microstructure characteristic. Additionally, coarse colony microstructures were also observed, and their formation and the effect of temperature gradient on the microstructure were discussed.  相似文献   

19.
The main objective of this paper was to fabricate Cu10Sn5Ni alloy and its composites reinforced with various contents of Si3N4 particles (5wt%, 10wt%, and 15wt%) and to investigate their dry sliding wear behavior using a pin-on-disk tribometer. Microstructural examinations of the specimens revealed a uniform dispersion of Si3N4 particles in the copper matrix. Wear experiments were performed for all combinations of parameters, such as load (10, 20, and 30 N), sliding distance (500, 1000, and 1500 m), and sliding velocity (1, 2, and 3 m/s), for the alloy and the composites. The results revealed that wear rate increased with increasing load and increasing sliding distance, whereas the wear rate decreased and then increased with increasing sliding velocity. The primary wear mechanism encountered at low loads was mild adhesive wear, whereas that at high loads was severe delamination wear. An oxide layer was formed at low velocities, whereas a combination of shear and plastic deformation occurred at high velocities. The mechanism at short sliding distances was ploughing action of Si3N4 particles, which act as protrusions; by contrast, at long sliding distances, direct metal-metal contact occurred. Among the investigated samples, the Cu/10wt% Si3N4 composite exhibited the best wear resistance at a load of 10 N, a velocity of 2 m/s, and a sliding distance of 500 m.  相似文献   

20.
Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/w(SiO2) value in the reaction region. A liquid product (containing 0.7–1.2 w(CaO)/w(SiO2), 15wt%–20wt% Al2O3, and 5wt%–15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号