首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在下穿既有道路的新建隧道爆破施工中,爆破振动极易引起上部路面结构的损伤和破坏.以宝汉高速新建下穿316国道的关林子隧道为例,采用有限元法模拟路面关键点峰值振速、路面应力以及路面位移,并结合现场爆破振动与振速监测结果,对比分析爆破振动对既有道路的影响.主要研究结论如下:10个关键点爆破峰值振速均发生在掏槽眼爆破时,既有道路的应力以及路面位移均较小,不足以引起既有道路的破坏;根据数值模拟和现场测试结果,下穿段地表质点振速的合速度峰值不超过0.035 m/s时可保证既有道路安全.  相似文献   

2.
为了研究软岩隧道在全断面开挖方式下的变形规律,本文对实际软岩隧道的全断面开挖方式下的拱顶变形进行研究,通过现场隧道监控测量的实测数据,并在室内对所得数据进行数值模拟分析。根据现场监控量测实测可知,软岩隧道的拱顶竖向变形稳定大约需要监测断面距离掌子面2~3倍洞径以上,根据数值模拟结果可以发现,当掌子面超前监测断面3洞径以上时,监测断面的变形趋于稳定。且现场实际监测的拱顶下沉数据与数值模拟结果接近。又得出初支变形规律可以一定程度上代表围岩的变形,因此在隧道监测实际实施中,可以通过方便快捷的初支变形监测代替围岩变形监测。  相似文献   

3.
劳家荣 《科学技术与工程》2020,20(25):10480-10485
为明确六汉隧道浅埋顺层岩体开挖后围岩应力变化规律及特征。基于FLAC3D数值模拟分析顺层围岩隧道变形特性,对岩层节理面处偏压应力及二衬结构变形特征进行了施工期动态原位监测。结果表明:浅埋顺层岩体地形隧道开挖致使岩层节理面两侧局部应力不均衡,出现较大偏压应力和剪切应力;基于近9个月的监测点数据显示开挖20~30 m与80~90 m后,隧道初支与围岩接触应力变化明显,前者应力变化速率达到峰值,而后者开始趋于稳定;二衬混凝土结构应变随时间变化的响应规律表明初支结构承受围岩变形大部分有效荷载,二衬分担围岩变形传递的局部不均衡应力。其现场监测结果为今后该类型隧道设计与支护荷载的计算奠定了理论基础。  相似文献   

4.
为了研究中国西南地区泥质页岩地层修建隧道时所存在的围岩大变形、初期支护偏压破坏等现象,依托中老铁路玉溪至磨憨段曼木树隧道为工程背景,通过现场监测和数值模拟相结合的方法对泥质页岩偏压段的围岩变形、围岩压力和钢拱架应力进行研究,探讨支护结构的受力特征.研究结果表明:上台阶开挖后的变形占总变形量的80%,最大变形位置为左侧拱腰处;围岩压力和钢拱架应力呈现明显的"上大下小"和"左大右小"的空间分布特点,围岩压力最大值为386.4 kPa,钢拱架应力最大值为174.2 MPa;模拟结果与实测结果变化趋势接近,具有明显的偏压特征,左侧拱腰位置偏于危险.研究成果可为泥质页岩地层下隧道的设计和施工提供参考.  相似文献   

5.
针对新建暗挖隧道对已建盾构隧道的影响,以济南地铁R3线盾构与浅埋暗挖隧道小净距并行段为依托,对暗挖隧道不同施工工法进行模拟优选,分析在帷幕注浆加固条件下新建暗挖隧道对已建盾构隧道管片变形及应力的影响,并结合现场实测数据对比验证优选施工方法的可靠性.研究结果表明:暗挖隧道施工工法对于地表沉降和隧道管片的变形影响显著,其中交叉中隔墙(cross diaphragm,CRD)法和双侧壁导坑法在控制地表沉降、管片变形及应力方面差异较小,且两者均优于核心土法和中隔墙(center diaphragm,CD)法.综合考虑施工速度、影响范围以及地表与既有盾构隧道变形控制等因素,确定暗挖隧道采用CRD法施工.现场监测表明采用优选的施工工法可以保证地表变形和盾构管片变形控制在允许范围之内.  相似文献   

6.
在超大埋深软岩隧道中,通常地应力较高,且围岩软弱破碎,在施工过程中不可避免的会出现大变形现象,造成支护结构失效破坏。采用超前中导洞应力释放技术提前释放地应力,可以改善支护结构的受力状态,减小隧道变形量,保证支护结构的安全。本文依托丽香线哈巴雪山大变形隧道,采用文献调研、数值模拟及现场监测等手段对超大埋深软岩隧道超前中导洞合理断面大小进行研究,分析了中导洞不同断面大小工况下应力释放效果,最终确定中导洞合理断面大小。研究结果表明,超前中导洞断面为正洞断面面积的0.6倍时,应力释放效果较为理想,相比直接开挖正洞,采用合理超前中导洞断面时,正洞拱顶沉降及上、下台阶水平收敛值分别减小28.2%、27.64%和26.71%,且围岩中切向应力峰值向围岩深部转移了约4 m,同时,应力峰值数值有所减小,减小约5.04%。研究成果可为类似大变形隧道工程提供参考与借鉴。  相似文献   

7.
为研究多洞并行公路隧道群施工时各洞间相互影响规律,以成都天府机场高速公路龙泉山四洞并行隧道工程为背景进行数值模拟分析,研究后行隧洞开挖对先行隧洞围岩塑性区、初支受力及变形产生的影响.数值模拟结果表明:先行隧道初支受力及变形受后行相邻隧道开挖影响较大,且其影响随着隧道净距的减小和后行隧道断面的增大而增大;先行隧道初支压应力最大增量发生在靠后行隧道一侧的边墙部位,拉应力最大增量发生在拱顶部位.数值模拟以及现场监测均表明采用两侧2车道隧道先同时开挖,接着中间两3车道隧道依次开挖,同时相邻隧道掌子面错开距离控制在30 m的施工工序能够满足施工安全性要求,可为类似工程提供经验参考.  相似文献   

8.
为分析叠交地铁施工中既有隧道变形的影响因素,依托苏州市轨道交通S1线工程S1-TS-05标段,针对在砂质淤泥质土层中盾构上穿施工导致的既有隧道的沉降与变形,采用数值模拟方法分析隧道几何参数、空间位置、地层参数等因素对既有隧道的影响,结合现场监测验证数值计算的准确性。研究结果表明:在砂质淤泥质土层盾构上穿施工中,既有隧道的位移和管片变形以竖向沉降为主,且沉降量随着盾构直径的增大而增大,随着覆土层厚度、新旧隧道净距、下穿角度,以及地层弹性模量的增大而减小。现场监测数据与模拟结果较为吻合,既有隧道位移与距叠交中心距离呈负相关关系。研究结论可为同类型地层条件下叠交地铁隧道盾构施工变形控制提供参考。  相似文献   

9.
随着我国公路、铁路建设的大力发展,山岭隧道洞口段、冲沟段、沟谷等地段的超浅埋问题严重威胁着隧道施工及运营期的安全。本文以某超浅埋山岭隧道为分析对象,采用了数值模拟和现场监测的手段,对超浅埋隧道在开挖条件下围岩的变形进行分析。分析结果表明:当隧道埋深小于2倍隧道直径时,埋深越浅隧道开挖后拱顶下沉位移量越大;超浅埋隧道开挖后围岩的变形可分为三个阶段,即变形急增阶段、变形缓慢阶段和变形平稳阶段;其中,第一阶段围岩产生的变形最大,是隧道开挖过程中重点关注的一个阶段。最后,通过对比分析发现,实际监测数据与模拟结果变化趋势基本吻合,模拟结果的累积变形值略大于实际监测结果,这是因为监测工序晚于开挖工序。因此,掌握超浅埋隧道在开挖过程中的围岩变形规律,并制定科学合理的开挖支护措施对隧道的安全十分重要。本文的研究是基于工程实例开展的,其研究成果对同类工程具有指导意义。  相似文献   

10.
以宁波轨道交通3号线二期盾构隧道工程为背景,对软土地区盾构掘进过程中引起的SF双层油罐变形及应力分布规律进行数值模拟分析。结果表明,合理选取土体损失率、正面附加推力等参数值可有效控制油罐扰动。罐区变形以竖向变形为主,隆起量极值位于距离隧道较近的油罐,沉降量极值位于中心油罐区。距离盾构隧道较近的油罐壁出现较大附加应力,油罐各项应力值均小于罐体材料许用应力。油罐满载工况下变形及附加应力值均低于空载工况。现场监测数据时程变化趋势与数值分析结果一致,地表变形量及变形速率满足监测要求。  相似文献   

11.
云南玉磨铁路曼勒一号隧道地处喀斯特地貌区,现场施工中遇围岩地应力高、变形量大、变形持续时间较长等问题,导致初支变形严重,影响施工进度,其中高地应力是导致围岩大变形的主要原因。通过建立力学模型分析与施工现场试验,提出开挖迂回导坑释放高地应力的控制措施,降低隧道围岩大变形风险。研究结果显示:通过数值模拟分析增设迂回导坑后,隧道正洞围岩变形量有效降低,拱顶沉降及拱腰收敛分别降低38.46%和58.34%,围岩塑性区最大塑性应变减小25.40%,围岩及初支结构应力减少了20%~24%。现场施工中,迂回导坑段隧道比仅开挖隧道正洞的围岩变形量减少了61.92%。迂回导坑的开挖能够有效控制变形量及变形速率,现场试验效果良好,施工进度得以加快。  相似文献   

12.
基于损伤效应,采用有限元软件建立隧道洞口段三维数值模型,并结合现场监测分析考虑与不考虑损伤范围两种情况下麻栗垭隧道洞口段稳定性与安全性.由爆破实验结果得出爆破损伤影响范围约为5.0m,通过与现场监测数据对比可知,考虑围岩损伤效应后数值模拟能更准确反映围岩应力、应变分布规律.经检验,工程支护体系具有足够的安全度.考虑损伤效应后的模拟结果与现场监测值更加符合,拱顶沉降和周边收敛误差分别减小了12.1%和32.8%,数值模拟误差明显降低.运用监控量测与数值模拟相互印证的方法可以更准确地分析隧道结构的稳定性,更好地指导施工,从而为麻栗垭隧道及类似地质下的隧道设计和施工提供理论依据.  相似文献   

13.
当地铁隧道距离基坑较近时,基坑施工会对地铁隧道的围岩应力进行重分布,并引发隧道结构产生变形及内力变化,甚至影响隧道的正常运行.文章应用三维数值分析的手段,对基坑施工过程进行三维动态模拟分析,并结合现场实际监测数据,分析基坑开挖对邻近矿山法地铁隧道的影响.分析表明,基坑施工会使邻近矿山法地铁隧道结构产生变形,但变形量非常微小,不会影响到地铁隧道的结构安全性.其现场实测数据与有限元分析结果对比反映了隧道变形的规律,可以为以后的工程提供参考.  相似文献   

14.
以兰渝铁路胡麻岭隧道为工程背景,通过三维数值模拟结合典型断面现场监测,对铁路大断面黄土隧道初期支护的受力与变形特性进行综合研究,通过数值模拟得到黄土隧道在开挖扰动后初期支护的受力状态,将数值模拟结果和现场监控量测数据进行对比,获得典型断面围岩与锚杆轴力的变化规律,并对初期支护作用效果进行评价,找出施工过程中的薄弱环节,提出相应的优化措施.结果表明,数值计算与现场实测结果基本吻合,黄土地区隧道施工应坚持"及时支护、及早封闭"原则,确保开挖后围岩变形的稳定.  相似文献   

15.
潘鹏旭  陈伟  郑京承 《科学技术与工程》2023,23(29):12714-12720
为了解隧道下穿富水强风化砂岩地层施工对既有铁路的影响,依托某电缆隧道下穿广深铁路工程,通过理论分析、数值模拟与现场监测开展了相关研究,并分析了具体施工措施对隧道及地表变形控制的影响。结果表明:当不考虑地表列车荷载和地层富水时,开挖及顶进力为地表沉降、隧道变形的主要影响因素;当单独考虑列车荷载或地层富水弱化作用时,列车荷载会使得下穿段地表沉降和隧道拱顶沉降增大,而地层富水弱化对隧道进出口段沉降及下穿段底部隆起影响较大;当同时考虑列车荷载和地层富水时,隧道拱顶沉降及下穿段路基沉降均会大幅增加。对比分析现场监测、Peck公式预测和数值模拟计算结果,可知数值模拟结果与不考虑地层富水弱化时的Peck公式预测结果十分吻合,但由于其未考虑加固止水措施,地表沉降大于现场监测结果。电缆隧道下穿广深铁路现场施工严格执行现场监测和变形控制措施,将地表沉降值和隧道拱顶沉降值分别控制在6 mm和10 mm之内,隧道底部隆起控制在5 mm以下,可以保障项目的顺利实施与列车的运行安全,并为同类型工程提供一定的经验参考。  相似文献   

16.
为了解决浅埋软岩隧道在开挖过程中发生大变形的问题,依托在建隧道工程,分析隧道初支变形及破坏特征,并利用数值模拟软件对大变形原因进行分析,提出合理的变形控制措施。结果表明:洞口浅埋段围岩受到开挖扰动和地下水影响,围岩变形量大,纵向变形分布不规律;开挖初期变形快且变形速率大,最高达到38.4 mm/d;变形持续时间长,变形后期能达到10.2 mm/d;变形主要发生在上、中台阶开挖阶段,约70%;初支应力过大,且塑性区过度发展是隧道发生大变形的主要原因。根据现场监测数据和数值模拟结果提出优化工法、提高支护参数、进行洞内降水和加大预留变形量的综合处治措施。研究结果可为类似软岩隧道的大变形预防与处置提供参考。  相似文献   

17.
针对地铁隧道施工影响下紧邻密集管线保护问题,依托南昌地铁实际工程,采用ABAQUS软件建立土体-密集地下管线-隧道暗挖三维有限元模型,结合现场实测数据与数值模拟结果,分析了隧道CRD (cross diaphragm)工法施工时的地层变形规律、地下管线应力特性与地下管线变形规律,并对管线周边土体有无注浆加固时的管线力学特性进行了对比。研究结果表明:(1)隧道开挖引起的管线变形以沉降为主,管土刚度差异对管线变形和应力影响显著。(2)管土刚度差异越小,管线变形趋势与土体变形趋势越接近;管土刚度差异越大,管线对地层变形的抵抗作用也越强会产生较大应力。(3)隧道左右导洞上方管段是危险区域,需重点保护。(4)密集地下管线主要表现为管线材质、管线几何特性、管线与隧道的空间位置关系不同,保护地下管线的核心在于控制地层沉降,地下管线保护关键阶段是隧道掌子面接近管线,此时应确保超前注浆效果和初期支护快速封闭,并加强对管线变形的监测。  相似文献   

18.
以某黄土连拱隧道为研究背景,通过数值模拟,对隧道围岩在施工过程的应力和应变的变化情况及隧道的稳定性等进行了分析,结果表明数值模拟的结果与现场实测值较为吻合.  相似文献   

19.
以明垭子软岩隧道为工程依托,结合现场围岩岩性应用理论分析得出隧道围岩变形的理论极限位移,通过FLAC数值模拟软件建立相应的计算模型,分析了现场施工引起的隧道围岩变形值,根据位移评判依据来评判隧道的稳定性,通过现场监测分析明垭子隧道围岩的变形特点。研究结论对软岩隧道的安全施工有一定的参考价值。  相似文献   

20.
管棚注浆法是浅埋地下工程通用的一种超前支护技术.为分析管棚注浆支护法在浅埋松软地层开挖中的支护效果,以某三孔框构式引水隧道洞口段浅埋松软地层为例,通过对管棚应变变化情况进行监测研究和对隧道施工过程中引起地表沉降进行现场监测,利用ADINA软件对不同支护条件下隧道开挖过程所产生地表沉降值进行数值模拟.以数值试验的定量分析作为理论基础,通过监测管棚形变和地表沉降数值变化,并对两者结果进行对比分析.结果表明,管棚注浆支护设计在浅埋松软地层开挖中应用效果显著,管棚注浆法能够在对隧道围岩进行超前预加固时形成一圈防护层,能分担部分隧道上覆岩层应力,从而较好地调节围岩应力重分布,同时又能有效地抑制围岩的变形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号