首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
针对DBSCAN算法的不足,提出了一种基于DBSCAN的自适应聚类算法.通过引入对象密度迅速地找到数据集中的核心样本,并从核心样本出发进行统计学分析得到Eps与MinPts之间的函数关系及相关的Eps与MinPts参数值,并利用所获参数值进行自适应的聚类;采用若干个仿真和真实数据集进行实验,评估该算法的有效性和可靠性....  相似文献   

2.
曾泽林  段明秀 《科技信息》2012,(30):163-163
DBSCAN算法是一种基于密度的算法,可以发现任意形状的聚类,不受噪声影响。本文首先对基于密度的聚类算法DB-SCAN进行了描述和分析,最后给出了算法的具体实现框架。  相似文献   

3.
聚类技术是数据挖掘中的一项重要技术,它能够根据数据自身的特点将集中的数据划分为簇.DBSCAN是一种经典的基于密度的聚类算法,能发现任意数量和形状的簇,但需设置Eps和MinPts参数,且聚类效果对参数敏感.提出一种改进的DBSCAN算法,该算法采用自适应的Eps参数使得DBSCAN算法能对具有不同密度的簇的数据集进行聚类.仿真实验结果验证了所提算法的有效性.  相似文献   

4.
针对DBSCAN算法I/O开销和内存消耗大的缺陷,提出了基于层次合并的密度算法,基于密度的空间聚类算法可以有效地过滤噪声和孤立点数据,该算法在对于处理较大数据集上具有较大优势。  相似文献   

5.
一种改进的基于密度的DBSCAN聚类算法   总被引:1,自引:0,他引:1  
主要讨论数据挖掘领域中一种基于密度的DBSCAN聚类算法,并对算法进行改进。利用取样技术缩小数据库的规模,减少算法的运行时间。利用遗传算法对聚类结果进行优化,保证聚类的质量。给出了一种基于取样的DBSCAN算法及其遗传优化。最后实验证明了算法的有效性。  相似文献   

6.
Web文本聚类是文本挖掘的重要组成部分。该文章分析了Web文本挖掘的方法,通过比较现有的几种聚类算法之后,着重研究了一个基于DBSCAN的聚类算法.以及它在文本挖掘中的具体实现过程。  相似文献   

7.
DBSCAN方法是一种典型的基于密度的聚类算法,因此该方法具有可以发现任意形状的类的特点,但其聚类的效率并不是很高.如果考虑将传统的网格技术引入到DBSCAN聚类算法中,虽然一定程度上会提高聚类的效率,但其聚类的质量显得较为粗糙.文章通过引入自适应网格技术,使得DBSCAN聚类算法的效率和质量都有所提高.对比数值实验表明,基于自适应网格的DBSCAN聚类算法的聚类效果是良好的.  相似文献   

8.
车辆出行次数是城市车辆出行的基本特征之一,一般采用抽样调查获得。利用城市车辆RFID(radio frequency identification)出行数据,提出了一种基于DBSCAN(density-based spatial clustering of application with noise)算法的车辆出行次数计算方法。首先,利用k-差值法计算出DBSCAN算法中ε-邻域半径;然后,利用车辆一周(月、季度、年)的RFID轨迹链数据进行DBSCAN密度聚类,获取车辆出行时间特征和出行次数。实验表明,该方法具有较高的准确性,实现简单。  相似文献   

9.
针对DBSCAN算法I/O开销和内存消耗大的缺点,提出了基于层次合并的密度算法.该算法减少了DBSCAN算法中需要查询的点的数量,从而克服了DBSCAN算法I/O开销和内存消耗大的缺点.算法分析表明该算法对DBSCAN的改进是有效的.  相似文献   

10.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。  相似文献   

11.
对于专利价值的不确定性和影响因素的复杂性,以及评估工作中缺乏可操作性强并且科学高效的评估方法等问题,对价值评估指标体系进行分析,并使用随机森林算法选择最有效的指标集,同时基于DBSCAN(density-based spatial clustering of applications with noise)聚类选择高精度且一致性低的决策树子森林改进传统随机森林算法,使用改进前后的两种随机森林模型在专利数据样本上进行实验并比较。结果表明,改进的随机森林模型提升了传统模型的精度,在专利价值评估中具有一定的作用,总体上比较有效地反映了专利的价值度。  相似文献   

12.
目前大多数的轨迹隐私保护方法对轨迹的形状相似性考虑并不充分,并且容易忽略各轨迹点之间的时序相关性,导致生成的干扰轨迹可用性不高。为了解决这些问题,提出了一种基于密度聚类算法(density based spatial clustering of application with noise, DBSCAN)的差分隐私轨迹保护机制。首先,使用DBSCAN算法对数据进行聚类分析,降低数据集中噪声点对聚类效果的影响;其次,根据用户活动轨迹点的时序关系,生成位置转移概率矩阵,利用差分隐私的方法确保生成的干扰轨迹点与真实轨迹点具有相似的位置转移概率;最后综合考虑差分隐私预算和弗朗明歇距离(Fréchet distance)对轨迹相似性的影响,选取位置干扰点。通过仿真实验分析,本文的方案在效率上具有明显的优势,并且生成的干扰轨迹与真实的位置轨迹相比具有较高的形状相似性。  相似文献   

13.
空间聚类分析是聚类领域的一个研究方向,聚类研究是数据挖掘领域的一个重要的研究分支。通过介绍空间聚类分析在精准施肥过程中的应用,具体讨论了两种方法BIRCH与Wavecluster在精准施肥中的使用情况,并分析了这两种方法在精准施肥领域使用过程的特点与差异。  相似文献   

14.
结合SLIC超像素和DBSCAN聚类的眼底图像硬性渗出检测方法   总被引:1,自引:0,他引:1  
为自动检测出眼底图像中的硬性渗出,结合简单线性迭代聚类(SLIC)超像素分割算法和基于密度的聚类算法(DBSCAN),提出一种对眼底图像硬性渗出的检测方法.首先,采用SLIC超像素分割算法对彩色眼底图像进行过分割;然后,采用DBSCAN对上述分割得到的超像素进行聚类,形成簇;最后,分割出目标图像,并选用标准糖尿病视网膜病变数据库(DIARETDB0和DIARETDB1)的眼底图像验证上述组合算法的可行性.实验结果表明:算法能够快速、可靠地检测出眼底图像中的硬性渗出,具有可直接对彩色图像进行分割、特征提取的特点.  相似文献   

15.
RNN(相互最近邻)算法是一种基于层次的聚类算法,它比其他传统的层次聚类算法聚类更快.由于利用RNN算法对同一个数据集聚类,若选择不同簇间距离度量方式,那么聚类结果就会不同.因此在分析聚类结果对距离度量方式依赖性的基础上,采用用聚类聚集的思想,找出一种新的聚类方式,从而使得聚类效果更好.  相似文献   

16.
基于DBSCAN算法的郑洛地区史前聚落遗址聚类分析   总被引:1,自引:0,他引:1  
为了解决判别聚落群过于依赖考古专家人工划分的问题,以郑洛地区新石器时代聚落遗址为例,采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)算法对聚落遗址进行空间聚类研究。通过对郑洛地区四个文化时期聚落遗址的分布分析,发现郑洛地区的主体聚落群从研究区东部的嵩山以南地区,转移到郑洛地区中部的伊洛河流域,并且在伊洛河流域长期定居下来,不断发展扩大;大型聚落遗址主要分布在主体聚落群里,除了裴李岗文化时期部分大型聚落较孤立;从仰韶文化后期到龙山文化时期,聚落遗址分布呈主从式环状分布格局;大多数聚落群的走向都和河流分布一致。研究表明,利用DBSCAN算法进行聚落遗址聚类是可行的,通过聚类得到郑洛地区新石器时代四个文化时期聚落遗址的分布特征。  相似文献   

17.
对于具备空间特性的数据来说,基于密度的聚类方法是一种基本且行之有效的聚类技术.尽管现有很多基于密度的空间聚类算法和技术,但是这些算法多数都假设数据分布于平滑空间.弯曲空间与平滑空间只局部存在相似性.本文的目的在于探讨一种新的基于密度的流形空间聚类,即基于弯曲空间的算法.此算法主要来源于切空间,并适用于非均匀、非线性的数据分布,同时给出了性能分析和实验测试.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号