共查询到20条相似文献,搜索用时 46 毫秒
1.
基于传统的小波变换去噪算法可能使信号的急剧变化部分产生人为的振荡现象,产生这种现象的一个直接原因是小波缺乏平移不变性。提出了基于平移不变的小波去噪方法,对所分析的信号进行循环平移,再利用软或硬门限对该信号的小波系数进行压缩,重构信号,再进行相反的循环平移,通过多次的平移-消噪-平移,平均所获得的结果,从而消除小波基的平移依赖性。该方法有效地消除人为的振荡现象,使消噪后的信号更加光滑,更好地逼近真实信号。 相似文献
2.
小波包变换可以将不同频段的信号分离,信号和噪声经小波包分解后,其小波包系数将表现出不同的特性,通过对小波包系数进行阈值处理,可以有效地抑制噪声,很好的重构信号。在平均浮动阈值的基础上,通过计算机仿真,显示了平均浮动阈值下小波包变换信号去噪的效果,结果表明:此方法具有良好的效果。 相似文献
3.
王香云 《太原师范学院学报(自然科学版)》2015,(1):33-37
小波作为一种数学函数,被应用在很多领域,从信号去噪的角度对小波进行分析研究。首先给出小波的理论介绍,接着在matlab中通过实验对前面的理论进行进一步的阐释,最后鉴于FPGA的查找表的特点和DA算法的思想,硬件实现小波算法。 相似文献
4.
小波变换在语音去噪中的应用 总被引:2,自引:0,他引:2
马建芬 《太原理工大学学报》2001,32(3):238-239
提出一种新的基于小波变换的语音去噪算法。利用此特性对信号进行小波域波滤,可从加噪的语音中提取人耳所能接受的频率成份,是一种简单有效的语音去噪算法。 相似文献
5.
邱庚香;陈德海 《江西理工大学学报》2003,24(4):13-16
讨论了一种基于小波变换的信号去噪方法,从3种不同的去噪方法比较中看出小波变换在信号去噪中的优越性,数值实验及实际运用都证明了该方法的有效性 相似文献
6.
用小波剔除局放信号中白噪声的一种实用方法 总被引:8,自引:0,他引:8
局部放电信号中的白噪声给局放信号的后续处理带来了很大的困难,白噪声的剔除是局部放电信号处理中的一个不可缺少的环节。虽然有很多剔除白噪声的方法,但是大都不是很适合局放信号的处理。局部放电信号和白噪声有着不同的Lipschitz指数,经过小波变换后二者在时间--尺度平面上有不同特征。据此,文中提出了一种剔除白噪声的新方法,该方法运算简单,适合局放信号快速处理。处理后的局放信号不失真,而且剔除效果良好,能够运用于现场局部放电信号的处理。 相似文献
7.
8.
李蕴华 《盐城工学院学报(自然科学版)》2002,15(2):32-35
讨论了离散小波变换在语音去噪中的应用。根据语音中浊音段和清音段的特点,采用了不同的阈值方案,可以保证在失真较小的前提下,获得更好的去噪效果。 相似文献
9.
基于小波变换的舰船雷达信号去噪方法 总被引:7,自引:0,他引:7
由于舰船雷达信号目标环境的复杂性,从强杂波中检测目标异常困难,基于小波变换下奇异信号和随机噪声在多尺度空间中不同的模极大值传播特性,设计了一种实用的小波消噪方法。对舰船雷达回波信号实验检测结果表明,该方法能较好地改善信噪比增益,同时又能保持对突变信号的良好分辨率。 相似文献
10.
11.
小波域局部背景隐马尔可夫模型(LCHMM)可获得尺度内的相关性和局部的统计特征,并且复杂度小,多小波分析在图像去噪方面有很好的性能。利用多小波分析和局部背景隐马尔可夫模型各自在图像去噪方面的优势,将两者结合起来,提出了一种基于多小波的局部背景隐马尔可夫模型(M—LCHMM)图像去噪算法。算法主要有两步:局部背景隐马尔可夫模型去噪处理和均值处理。该算法简单有效,仿真试验表明M—LCHMM的去噪效果优于目前许多已有的去噪算法。 相似文献
12.
隐马尔柯夫模型在信号检测中的应用 总被引:1,自引:1,他引:1
用隐滤波器隐马尔哥尔夫模型从相似功率谱噪声中检测脑电信号,运用似然比检验的方法对混有噪声的脑电信号进行检测。实践表明,该方法检测效果较好,在-18dB信噪比时仍得到满意的ROC曲线。 相似文献
13.
为保证三维体视化图像能较准确地表达组织,以人脑磁共振图像为例,提出了基于小波域隐马尔科夫模型的体数据分类算法,首先采用EM算法进行HMT模型参数估计,然后通过小波分解,得到近似初始分类数和各类在小波空间中的特征量,这在以往体数据分类中需要事先对体数据进行大量的训练才能得到.分类结果采用ICM(iterated conditional mode)方法获得.其结果表明,该方法在运算时间和分类效果上都优于以往的多分辨率分类方法. 相似文献
14.
隐马尔可夫过程小波变换的参数估计 总被引:1,自引:0,他引:1
作者提出了一种新的方法来解决通过小波变换后的隐马尔可夫过程参数的计算问题.这个方法不必根据变换后的结果对系统参数进行重新估计,而只需利用变换后输出的小波系数直接来计算参数即可,避免了保留所有训练数据的繁琐复杂计算过程。 相似文献
15.
基于小波域隐马尔可夫模型多尺度图像分割 总被引:2,自引:0,他引:2
提出了一种基于小波域自适应上下文结构的多尺度图像分割算法(JACMS).该算法为了减小计算复杂度,采用隐马尔可夫半树模型和参数加权训练算法,得到了可靠的初始分割.为了获得较好的区域一致性和边缘准确性,在进行尺度间融合时,采用自适应的上下文结构分别应用于图像纹理均质区域和图像纹理边缘,保证了图像大致轮廓的准确性和可靠性,提高了分割后图像纹理边缘的精确度.对合成图像与航摄像片的实验结果表明,该方法的分割错误概率低于传统的基于小波域隐马尔可夫树模型的图像分割方法,且对真实图像得到了理想的分割效果. 相似文献
16.
研究了基于小波域隐马尔可夫树模型非高斯信号的建模方法.探讨了海洋环境噪声和船舶辐射噪声在不同工况下所表现出的不同模型特征,并根据它们在HMT模型参数上的特征差异提出了一种新的检测方法,实验证明,该方法的检测性能比过零检测、能量检测以及二阶统计量检测方法要好.通过结合小波域隐马尔可夫模型和支撑向量机,提出了一种新的水声非高斯噪声信号的识别分类方法,实验证明,该方法具有较好的分类性能. 相似文献
17.
量化子空间分布隐马尔可夫模型的间接训练 总被引:1,自引:2,他引:1
研究了量化子空间分布隐马尔可夫模型(quantized subspace distribution hidden markov model,QSDHMM)间接训练所涉及的三个关键的问题:连续分布隐马尔可夫模型(continuous distribution hidden markov model,CDHMM)的训练、特征子空间的划分和子空间高斯分布的量化方案。提出了相关特征子空间的定义及实现算法。在仿真实验中,采用基于分类学的:Bhattacharyya距离测度的K均值高斯聚类算法对子空间高斯分布进行量化,用最相关子空间的概念划分特征子空间,并将这两者结合使用,提高了系统的识别精度和速度。 相似文献
18.
为提高基于隐马尔可夫模型(HMM:Hidden Markov Model)的网页预取精度,对经典隐马尔可夫模型的两个前提假设进行了扩展,推导出新模型中计算观测序列概率的公式.由此构建出可用于网页预取的高阶隐马尔可夫模型,同时为降低高阶隐马尔可夫模型的空间复杂度,给出了构建树状状态空间存储访问序列的算法.介绍了将改进的隐马尔可夫模型应用于网页预取的具体方法,通过对比实验证实该方法的预取准确度提高了7%. 相似文献
19.
一种改进的隐马尔可夫模型训练算法 总被引:2,自引:0,他引:2
将类关联特征(class-dependent feature,CDF)用于隐马尔可夫模型(hidden Markov model,HMM)的建模,提出了一种新的HMM训练算法,与传统的HMM训练算法在理论上完全一致,但新算法避免了直接估计高维的状态输出概率密度函数(probability density function,PDF),可提高模型参数的估计精度. 相似文献
20.
为了推理移动用户在智能空间的活动,提出了基于隐马尔科夫模型的上下文感知活动计算.首先按照上下文的定义,采用元组方法表示移动用户和智能空间,然后根据活动理论基本构成元素和面向客体活动原理来描述用户活动和智能空间的状态变化,最后引用隐马尔科夫模型建立起用户活动与智能空间状态变化之间的联系,从而实现活动计算.该模型可以完整地描述活动分解为动作的过程,还可以根据每种活动的动作链标记用户活动数据,却不需要用户直接参与数据的标记.将该模型的动作状态数与上下文感知经验采样工具(ESM)的动作状态数进行比较,结果表明该模型的平均活动识别准确度比ESM高25%. 相似文献