共查询到19条相似文献,搜索用时 68 毫秒
1.
本文是采用改进BP神经网络的拟牛顿算法,并利用matlab提供的神经网络工具箱构建BP神经网络入侵检测系统。此算法的优越性在于收敛速度比较快,特别对于较高维数的问题。测试后证明所构建的系统是可行的,能够检测到新的入侵行为。 相似文献
2.
3.
针对普通BP神经网络算法学习收敛速度慢、易造成局部极小的问题,提出一种改进的BP神经网络入侵检测方法,其采用拟牛顿的方法进行学习,即对目标矩阵求二阶导数.运用该方法能够有效提高学习速度,消除局部极小.仿真结果表明,改进的BP神经网络入侵检测方法收敛速度快,比标准的BP入侵检测方法误检率低,能够很好地提高学习效率,更加有效地检测攻击行为. 相似文献
4.
5.
根据被动毫米波图像的特点,需要设计一种适应并且有效的被动毫米波图像中人体隐匿危险物品的检测方法。该文提出了一种被动毫米波图像中人体隐匿物品的检测方法,首先,对原始被动毫米波图像进行预处理,通过插值重建后,采用三次迭代增强方法进行图像增强,获取处理后的被动毫米波图像,以使被动毫米波图像目标与背景进行明显区分;然后,通过对人体是否存在进行预判断,若存在则进行人体目标检测,获取人体区域;最后,采用两次迭代分割的方法对人体区域内的隐匿物品进行检测,并对检测到的隐匿物品区域进行标记。实验结果表明,该方法能有效地检测出被动毫米波图像中的人体隐匿物品,具有较高的准确性。 相似文献
6.
一种基于进化神经网络的入侵检测实验系统 总被引:10,自引:0,他引:10
参照MIT Lincoln实验室的入侵检测实验方案,建立了一个基于Linux主机的入侵检测实验环境,提出了相应的入侵特征选择方案,并应用进化神经网络检测入侵,实现了对多种攻击的实时特征抽取及检测。实验表明:系统设计合理,特征抽取及检测方法有效,能较好地检测已知和未知入侵。 相似文献
7.
针对复杂场景图像中的人脸,提出了一种基于BP神经网络的人脸检测算法,由网络训练和人脸定位两部分组成.可以有效地运用于多人脸、不同尺寸、不同姿态、不同面部表情、不同肤色、不同光照条件和复杂背景的情况。实验结果表明该算法快速有效。 相似文献
8.
针对一般的神经网络PID控制器难于得到系统预测输出值的缺陷。提出一种改进型的粗糙集神经网络PID控制器,阐述了其设计原理;对串级过热汽温控制系统的仿真结果表明,与普通神经网络PID建模方法相比,该控制器抗干扰和鲁棒性强。 相似文献
9.
邵伯乐 《长春师范学院学报》2014,(8)
随着互联网的发展和普及,传统网络入侵防范方法如防火墙、数据加密等已经很难保证系统和网络资源的安全。为此,本文设计了基于改进禁忌算法和神经网络的网络入侵检测方法。首先建立三层的BP神经网络模型用于实现入侵检测。然后通过BP反向传播算法获取网络的权值和阀值等参数,并设计了一种基于双禁忌表的改进禁忌优化算法,采用此改进的禁忌优化算法对BP算法优化得到的权值和阀值进行进一步寻优。最后,将禁忌算法优化后的神经网络用于网络入侵检测。仿真实验表明,此方法能够有效地实现网络入侵检测,具有较快的收敛速度和较高的检测率,是一种适合网络入侵检测的可行方法。 相似文献
10.
邵伯乐 《长春师范学院学报》2014,(4):47-50
随着互联网的发展和普及,传统网络入侵防范方法如防火墙、数据加密等已经很难保证系统和网络资源的安全。为此,本文设计了基于改进禁忌算法和神经网络的网络入侵检测方法。首先建立三层的BP神经网络模型用于实现入侵检测。然后通过BP反向传播算法获取网络的权值和阀值等参数,并设计了一种基于双禁忌表的改进禁忌优化算法,采用此改进的禁忌优化算法对BP算法优化得到的权值和阀值进行进一步寻优。最后,将禁忌算法优化后的神经网络用于网络入侵检测。仿真实验表明,此方法能够有效地实现网络入侵检测,具有较快的收敛速度和较高的检测率,是一种适合网络入侵检测的可行方法。 相似文献
11.
提出了一种基于BP神经网络的产品造型设计方法,采用计算机建模、模糊集理论和语义差异方法进行模拟研究。研究结果对采用BP神经网络建立产品造型参数和形容词的形象之间关系进行了分析。依据设计要素、产品造型和形状规则建造一个新的数据库连接,设计师可以生成产品图像不同的三维模型的基本的设计元素和形状规则。因此,改变参数的配置得到可接受和可修改产品的形状图像,运用这种方法所设计的产品可以更密切地配合消费者的需求。 相似文献
12.
易鸿 《重庆文理学院学报(自然科学版)》2008,27(2):32-35
提出一种基于神经网络的智能天线系统设计方案,通过分析神经网络模型的特征以及智能天线结构的要求,设计出了由微波插接天线和神经网络组合构成的智能天线系统结构模型,并通过训练和测试证明了该设计方案的合理性. 相似文献
13.
针对当前安全帽检测准确性低和适应性差的问题,提出一种以YOLOv3网络为基础,进行相应改进的安全帽检测方法;为了保证安全帽检测的准确度和增大对图片中安全帽的关注度,采用注意力机制增 强了从图片提取出的空间信息和语义信息,减少了图像细节的丢失,再使用可变卷积来适应人的姿态变化, 增强了模型对目标的适应性,减少了一定量的训练样本,最后通过改变输出特征图的尺寸,融合浅层的网络 特征,提升了人头等小目标的识别率;采用自制的 HELMET 数据集对方法进行训练与测试,并通过对比实验表明:方法相较于其他检测方法能够提取到更多的目标特征,达到更高的平均精度均值,同时在实际应用中适应性较好。 相似文献
14.
基于卷积神经网络的商品图像精细分类 总被引:2,自引:0,他引:2
针对某一类别商品图像的精细分类,研究并实现了深度学习中的卷积神经网络方法。所设计的卷积神经网络由2个卷积层、2个亚采样层及1个完全连接层组成,特征平面的神经元只对其感受野的重叠区域做出反应,由反向传播算法调整网络参数最终完成学习任务。通过鞋类图像的精细分类实验表明,该方法平均分类正确率可达91.5%。 相似文献
15.
为了解决传统静态安全技术缺乏对入侵进行主动检测的机制,而且在使用过程中需要人工实施和维护,难以满足当前网络安全要求的问题;一种针对误差信号函数和学习规则进行改进的BP算法在分析标准BP算法存在的问题和其原因的基础上被提出;采用该改进算法构建了一种结合误用检测和异常检测技术的基于BP神经网络的智能入侵检测系统模型;仿真实验结果表明与标准BP算法相比,该改进算法具有学习过程快的优点,并且该系统具有较高的检测正确率并能检测出新的未知的攻击模式。 相似文献
16.
李钢 《安庆师范学院学报(自然科学版)》2008,14(3)
入侵检测是一种积极主动的安全防护技术。入侵检测系统可分为基于主机的和基于网络的两种。和防火墙等其它安全产品相比,他们还存在很多缺陷。人工神经网络通过对大量训练样本的学习,可以获得正常和异常数据的分类知识,从而能够对入侵的异常数据进行识别。为此给出了基于BP网络的入侵检测系统,从试验数据发现,该系统不仅在测试阶段的检全率和误检率达到了令人满意的效果,而且在实时检测中,由于计算量不大,对于攻击和扫描的反应速度快,只要建立相应的报警机制,一旦检测到可能的入侵行为,系统就会立即通知管理员采取适当的措施,保护系统安全。 相似文献
17.
给出了一种神经网络盲多用户检测算法。这种盲检测算法基于最小平均输出能量准则,本质上是一个有约束的最优化问题。与传统方法相比,利用神经网络求解约束优化模型,可以有效降低计算量,保证实时性,同时使检测器的性能有所提高。 相似文献
18.
深度神经网络在物体识别和分类中应用广泛,将其用于口罩佩戴检测,有利于提高新冠疫情防控管理工作效率.首先,收集佩戴口罩图片,将样本图片数据集扩充到12000张.然后用Pytorch搭建ResNet-34深度神经网络,经适当预处理,调整学习率大小和批数据量大小,网络在验证集上准确率为98.41%,在测试集上准确率为97.25%.该网络对单张图片的检测用时为0.103秒,拥有较高的检测准确率和效率,能够满足公共场所对口罩佩戴检测的应用需求. 相似文献
19.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性. 相似文献