首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new nitriding process modifying both the surface and the matrix is proposed to improve the poor wear resistance and low hardness of the titanium alloy surface. The treatment of solid solution treatment, cold rolling and low temperature nitriding was used for surface modification. The results showed that the microstructure of the Ti–6Al–4V(TC4) titanium alloy sample changed from the original α+β phase to the residual α phase, metastable β phase and martensite α′ phase after solution treatment. The results of cold rolling experiments indicated that with the increase of rolling amount, many defects generated, and the grains were first elongated and then partially broken. During the process of low-temperature nitriding the recrystallization occurred, which effectively avoided the problem of coarse matrix structure. It has been found that after low-temperature nitriding, thin strip-like α-phase with dispersed distribution, which is a typical aging structure, formed. The XRD test results indicate that steady state nitrides Ti2N formed on the surface of the sample, but the content of Ti2N was relatively low. Based on the morphology of content of the surface and cross-section it is believed that a special type of nitriding layerformed after low-temperature nitriding. The mechanical performance test results indicate that the wear resistance and hardness of the alloy increased significantly.  相似文献   

2.
The microstructure, martensitic transformation and mechanical/functional properties of Ti–Ta-Hf alloys with various thermo-mechanical treatments were investigated. The results reveal that the hot-rolling could refine the grain size and introduce a certain number of defects, resulting in the disappearance of martensitic transformation. The as-casted and solution treated Ti–Ta-Hf alloys were composed of α'' martensite phase and smaller volume of β phase. In contrast, the grain size of solution treated Ti–Ta-Hf alloy was slightly less than that of as-casted Ti–Ta-Hf alloy. This should be responsible to the higher yield stress and superior strain recovery characteristics for solution treated Ti–Ta-Hf alloy. The yield stress for the dislocation slip and the maximum recoverable strain of solution treated Ti–Ta-Hf alloy were 723 ​MPa and 5.06%, respectively.  相似文献   

3.
The effect of thermo-mechanical treatment on the mechanical properties of a novel β-type Ti–36Nb–5Zr(wt%) alloy has been investigated.The solution treated alloy consists of β and α″ phases and exhibits a two-stage yielding with a low yield stress(around 100 MPa). After cold rolling at a reduction of 87.5% and subsequent annealing treatment at 698 K for 25 min, a fine microstructure with nanosized α precipitates distributed in small β grains as well as high density of dislocations was obtained to achieve a yield strength of 720 MPa and a ultimate tensile strength of 860 MPa. In spite of the formation of α precipitates, the β-stabilizers are not enriched in the parent β matrix due to the short duration and low temperature of the thermal treatment, resulting in a low chemical stability of β phase. The low stability of β phase and the small volume fraction of α precipitates produce a low Young’s modulus of 48 GPa. Such an excellent combination of low elastic modulus and high strength in mechanical properties indicates great potential for biomedical applications.  相似文献   

4.
The microstructure features, martensitic transformation behavior and mechanical/functional properties of Ti–V–Al alloy were tailored by changing rare element Y content in the present investigation. The results showed that Y doping resulted in the grain refinement and formation of Y-rich phase mainly distributing along grain boundary in Ti–V–Al alloys. The martensitic transformation temperatures of Ti–V–Al alloys slightly increased due to the variation of matrix composition induced by the presenc...  相似文献   

5.
The microstructure of the Ti–V–Al shape memory alloy with refined grain and in-situ TiB phase was modified by doping minor Boron (B), which contributes to the superior mechanical performances and strain recovery characteristics. Compared with other quaternary Ti–V–Al-X alloys, the Ti–V–Al–B alloy showed the largest ultimate tensile stress due to the solution strengthening, grain refinement and precipitation strengthening of in-situ TiB phase. Moreover, the Ti–V–Al alloy added 0.1 ?at.%B possessed the maximum yield stress of 701 ?MPa and the largest tensile fracture strain of 27.6% at the temperature of 150 ?°C. Meanwhile, the excellent strain recovery characteristics with fully recoverable strain of 4% could be obtained due to B addition. Besides, B addition suppressed the precipitation of ω phase during thermal cycling and further improved the thermal cycling stability of the Ti–V–Al alloy.  相似文献   

6.
a’ phase based Ti-Nb-Zr alloys with low Young’s modulus and high strength were prepared,and their microstructure and mechanical properties were characterized.It was revealed that the lattice expansion by Nb and Zr addition as well as the presence of a few of a" martensite might be responsible for the low modulus achieved.Ti-15Nb-9Zr alloy,with ultralow modulus of 39 GPa and high strength of850 MPa,could be a potential candidate for biomedical applications.  相似文献   

7.
This paper presents a systematic study of newly developed metastable β-type Ti-25Nb-2Mo-4Sn (wt%) alloy with high strength and low elastic modulus, with focus on the microstructural evolution and mechanical behavior associated with aging. The pre-treatment (solution treatment or cold rolling) prior to aging exerts substantial influence on the subsequent aging response including microstructural evolution and mechanical behavior. Even under the same aging treatment, the aging products could be (β+ω), or alternatively (β+α), depending on the pre-treatments. This interesting aging response was discussed on the basis of the mechanism for ω formation. High-density dislocation tangles and grain boundaries induced by severe cold rolling play a key role in hindering the transition from β to isothermal ω, favoring the precipitation of α phase on aging. By aging cold-rolled specimen for short time, superior mechanical properties, i.e. high ultimate strength of ~1113 MPa and low elastic modulus of ~65 GPa, achieved in Ti-25Nb-2Mo-4Sn alloy. The characterization of microstructural evolution and compositional change indicated that the precipitation of fine α does not cause the enrichment of β-stabilizers in β matrix upon a short-time aging, guaranteeing low elastic modulus of the short-time aged specimen. Meanwhile, fine α precipitates as well as dislocations play a crucial part in strengthening, giving rise to its high yield strength and high ultimate tensile strength.  相似文献   

8.
金属及合金的疲劳性能和疲劳行为是影响其长期安全服役的一个重要的因素。本文主要研究了锻造态和退火态Ti-20Zr-6.5Al-4V(简称TZ20)的疲劳行为和疲劳机制。XRD结果表明,锻造态和退火态两种状态的TZ20合金均由α相和β相组成。微观组织分析表明,虽然两种状态下该合金都呈现出典型的网篮组织特征,但是其各相含量及其晶粒尺寸有较大的区别。疲劳实验结果表明,锻造态和退火态合金的条件疲劳极限σ0.1(107)分别为623 MPa和572 MPa。疲劳断口分析表明,锻造试样疲劳断口具有多个疲劳裂纹源,而退火试样的疲劳断口只有一个疲劳裂纹源。  相似文献   

9.
系统研究了Ti9.6V86.4Fe4储氢合金中掺入10%(质量分数)的Ti0.9Zr0.1Mn1.5进行复合球磨对其相结构及储氢性能的影响.X射线衍射分析表明,Ti9.6V86.4Fe4铸态合金具有单一的体心立方(BCC)结构固溶体相,当添加10%的Ti0.9Zr0.1Mn1.5复合球磨后,复合物由BCC主相和C14型Laves第2相组成.扫描电子显微镜及X射线能量色散谱仪分析表明,Ti9.6V86.4Fe4合金粉颗粒表面包覆了一层Ti0.9Zr0.1Mn1.5微粒.储氢性能测试表明,Ti9.6V86.4Fe4中掺入10%的Ti0.9Zr0.1Mn1.5复合球磨后,虽然室温最大吸氢量(质量分数)从3.86%略微降低至3.61%,但其有效储氢量(质量分数)由2.01%提高到2.11%,活化性能和P-C-T曲线平台特性都得到了明显改善.  相似文献   

10.
The evolution characterization of the α/β interphase boundaries of the isothermally compressed Ti–5Al–2Sn–2Zr–4Mo–4Cr with lamellar microstructure was carried out via electron backscatter diffraction (EBSD) and transmission electron microscope (TEM). The effect of the α/β interphase boundary evolution on the dynamic globularization was discussed, and the nucleation model for the β recrystallized grain at the cusp of α lath in the late stage of deformation in terms of the classic nucleation theory was established. The mean α/β interface deviation angle from Burgers orientation relationship (BOR) increased continuously up to 18.9° with the increasing strain from 0.1 to 0.5, which was dominated by the continuous dynamic recrystallization. Restoration of BOR between α and β phases at the strains of 0.7 and 0.9 occurred due to the occurrence of recrystallized α and β grains following BOR, which was rationalized by a nucleation model considering the stored energy of deformation provided the driving force for nucleation at the cusp of α lath. Loss of coherency of α/β interphase boundaries at a strain about 0.3 was responsible for accelerating the dynamic globularization of α lamellae since the energy of α/β interphase boundaries increased up to the maximum value when the non-coherent α/β interphase boundaries were formed. Restoration of coherency of α/β interphase boundaries due to the recrystallization nucleation in the late stage of deformation did not substantially affect the dynamic globularization since the α/α intraphase high-angle boundaries (HAGBs) were formed and the most α/β interphase boundaries were non-coherent.  相似文献   

11.
The microstructure evolution and mechanical properties of a hot-rolled Ti-5.1 Al-2.5 Cr-0.5 Fe-4.5 Mo-1.1 Sn-1.8 Zr-2.9 Zn titanium alloy sheet along the thickness direction were investigated.The results indicated that the hotrolled titanium alloy sheet presented different microstructures along the thickness direction owing to the uneven distribution of stress and temperature during the hot rolling.The grains in central region underwent a larger deformation,leading to relative complete grain fra...  相似文献   

12.
In this paper,aging response of a recently developed near β Ti-25Nb-2Mo-4Sn(wt%) alloy with high strength and low modulus was investigated intensively.The experimental results from X-ray diffraction and transmission electron microscopy showed that the aging production of the Ti-2524 alloy was(β+ω) or(β+α) even under the same aging treatment condition,depending on the pre-treatments prior to the aging.Solid evidence confirmed the competition between stable α phase and metastable ω phase during the decomposition of β phase on aging.Different aging response of Ti-2524 alloy can be attributed to high-density dislocations and grain boundaries which suppress the formation of ω,and alternatively promote a phase formation.This provides a thermo-mechanical approach to inhibit deleterious ω phase formation and assist fine α phase precipitation.Upon an appropriate aging treatment,superior mechanical properties of high ultimate tensile strength(1233 MPa) and low elastic modulus(77 GPa) were achieved in Ti-2524 alloy.  相似文献   

13.
A Ti-8Nb-2Fe-0.2O(wt.%) alloy with high strength,high elastic admissible strain(δ) and low cost was designed using d-electron theory combined with electron-to-atom ratio(e/a) approach.Interstitial oxygen was introduced to strengthen the matrix of the alloy.The β-solution treated alloy was mainly composed of α " martensite with internal {111}_(α") type Ⅰ nano-twins.The α " martensite with hexagonal-like crystal structure caused by interstitial oxygen showed a high strength of 1.1 GPa but limited ductility.The alloy generated equiaxed fine-grained a phase embedded by β matrix via hot rolling and subsequent annealing in α+β phase field.The obtained alloy indicated a good combination of mechanical properties with ultimate tensile strength,Young's modulus,ductility and δ value of 1029 MPa,74 GPa,21% tensile elongation and 1.32%,respectively.These findings demonstrate that interstitial oxygen and martensitic nano-twins can be used to strengthen the soft α" martensite and high elastic admissible strain can be obtained by formation of equiaxed fine-grained α phase embedded by βmatrix in this Ti-8Nb-2Fe-0.2O alloy for orthopedic implant.  相似文献   

14.
A novel Ti-Ni-Nb-Zr quaternary filler alloy with the composition of Ti-(19~25)Ni-(15~25)(Nb+Zr)(wt.%) was designed.The filler alloy was composed of(Ti,Nb)ss,(Ti,Zr,Nb)ss+(Ti,Zr)2Ni,α-Ti and Ti2Ni phases.It was fabricated into filler foil with a thickness of about 45 μm by a rapid solidification technique.The results indicate that the liquidus temperature of the Ti-Ni-Nb-Zr brazing alloy was about 978℃,and the brazing alloy presented excellent wettability on TiAl substrate.T...  相似文献   

15.
用透射电子显微镜对不同轧制变形量的TiNbTaZr合金进行观察分析,结果表明:该合金轧制前为单相β相,轧制后出现应力诱发马氏体α"相,变形主要以位错-滑移为主,有少量马氏体α"相形成,马氏体α"相为正交晶系,单胞参数a=0.3152 nm,b=0.4854 nm,c=0.4642 nm;β相与马氏体α"相的位向关系为(011)β//(010)α″,(011)β//(002)α″,(100)β//(100)α″,[100]β//[100]α″。硬度检测表明:TiNbTaZr合金的硬度值随变形量的增大而增加,变形过程中形成的高密度位错是硬度值增大的主要原因。  相似文献   

16.
The microstructure, mechanical and magnetic properties of Zr–x (8, 9, 10, wt.%)Nb–4Sn alloys were investigated to obtain novel Zr-based alloy with low Young’s modulus and magnetic susceptibility for biomedical implants. After homogenization annealing, hot forging and solution annealing, Zr–8Nb–4Sn, Zr–9Nb–4Sn and Zr–10Nb–4Sn alloys were composed of β+α″ phase, β+α″ phase, β+ω phase, respectively. The temperature at which the α" and ω phase were transformed into β phase during the heating process was about 200 ​°C, and the phase transformation temperature decreased with the increase of Nb element. Among all the Zr–x (x ​= ​8,9,10)Nb–4Sn(wt.%) alloys, Zr–9Nb–4Sn alloy had the lowest Young's modulus of 46.6 ​GPa and the low magnetic susceptibility of 1.294 ​× ​10−6 cm3g−1, which has a good application prospect for biomedical applications.  相似文献   

17.
系统研究了机械球磨改性处理时间(t=0,1,2,4,8 h)对Ti9.6Cr11V75.4Fe4合金相结构和储氢性能的影响.XRD及扫描电镜分析表明,Ti9.6Cr11V75.4Fe4合金在球磨前后均为体心立方结构的固溶体单相,随着球磨时间的增加,合金的晶胞体积略微减小,合金颗粒逐渐细化并发生团聚.储氢性能测试表明,球磨改性处理能有效地改善合金的活化性能,随着球磨时间的增加,合金的室温可逆有效储氢量先增加后降低.其中,当球磨时间为2 h时,合金具有最佳的综合储氢性能,其室温最大吸氢量(质量分数)为3.7%,可逆有效储氢量(质量分数)为2.23%.  相似文献   

18.
The microstructure and texture evolution during continuous cooling hot deformation(CCHD) in a near β titanium alloy, named Ti-7Mo-3Nb-3Cr-3Al(Ti-7333), were investigated by using the electron backscattered diffraction(EBSD). The results indicate that the precipitation of secondary α phase was restricted by CCHD, and the morphology of primary α phase nearly had no change with the deformation and temperature drop. In contrast, βphase underwent more deformation and the grains tended to refine. This may be due to the dynamic recrystallization(DRX) of β phase, including continuous dynamic recrystallization(CDRX) and discontinuous dynamic recrystallization(DDRX). In addition, the textures of {110} 110 , {225} 520 and{115} 123 transformed to {100} 110 and {001} 100 during CCHD. Among these, the η-fiber component of {001} 100 was the dominant deformation texture in the deformed Ti-7333 alloy. Finally,continuous cooling has an important effect on the work hardening and softening during CCHD, contributing to the different flow behaviors at different cooling rates.  相似文献   

19.
Electric field treatment (EFT) was applied on GH4169 alloy during aging at 500–800℃ to investigate the microstructure and property variation of the alloy under the action of EFT. The results demonstrate that the short-distance diffusion of Al, Ti, and Nb atoms can be accelerated by EFT, which results in the coarsening of γ′ and γ″ phases. Meanwhile, lattice distortion can be caused by the segregation of Fe and Cr atoms, owing to the vacancy flows migrating toward the charged surfaces of the alloy. Therefore, the alloy is hardened by the application of EFT, even if the strength of the alloy is partly reduced, which is caused by precipitation coarsening.  相似文献   

20.
In this work, the 90° clock rolling and the uni-directionally rolling processes at high temperature were carried out on the near β-type Ti-5.2Mo-4.8Al-2.5Zr-1.7Cr titanium alloy cutting from an ingot, respectively. The corresponding microstructures were quantitatively characterized, and its effect on the dynamic mechanical properties and fracture mechanism were emphatically investigated. It was found that after 90° clock rolling, the microstructure composed of equiaxed primary α phase(αp) with an average size of about 2 ?μm and the β transformed regions containing the acicular secondary α phase(αs) with an average thickness of about 50 ?nm and the separated β phase was obtained. However, in the uni-directionally rolled titanium alloy, no acicular αs was observed, and the corresponding microstructure consisted elongated lamellar α phase (average thickness: about 1.3 ?μm), few equiaxed α phase (average grain size: about 300 ?nm) and the inlaid β phase. The microstructural difference of the hot-rolled titanium alloys was closely related to the deformation process. Moreover, a great number of αp and αs in the 90° clock rolled titanium alloy effectively enhanced the strength, and the dynamic compressive strength reached to 1730 ?MPa. Furthermore, equiaxed αp was conducive to the homogeneous deformation, which counteracted the localized deformation caused by acicular αs to a certain extent and made the 90° clock rolled titanium alloy exhibit an acceptable critical fracture strain of about 10.5%. Moreover, the fracture microstructures showed that the main failure mode of the 90° clock rolled and the uni-directionally rolled titanium alloy were ductile fracture and brittle fracture, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号