首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)M_(0.1)(M=Ni, Fe, Cu) alloys with a single C14-type Laves phase have been fabricated by arc melting. They are able to be easily activated by one hydrogen absorption and desorption cycle under 4 MPa hydrogen pressure and vacuum at room temperature. Partial substitution of M for Mn results in the increase of hydrogenation and dehydrogenation capacities in an order of Ni Fe Cu. M elements increase the absorption and desorption plateau pressure in an order of(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Cu_(0.1)(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Fe_(0.1)(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Ni_(0.1). The(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Cu_(0.1) alloy has reversible hydrogen capacities of 1.81 wt% at 273 K and 1.58 wt% at 318 K with formation enthalpy(ΔH_(ab)) of-20.66 kJ mol~(-1) and decomposition enthalpy(ΔH_(de)) of 27.37 kJ mol~(-1). The differences in the hydrogen storage properties can be attributed to the increase of the interstitial size for hydrogen accommodation caused by the increase of unit cell volumes in the order of(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Ni_(0.1)(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Fe_(0.1)(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Cu_(0.1).  相似文献   

2.
The microstructure and hydrogen absorption-desorption characteristic of (Ti0.85Zr0.15)1.1Cr1-xMoxMn (x ?= ?0.05, 0.1, 0.15, 0.2 ?at.%) alloys were investigated. The results showed that the corresponding alloys were determined as a single phase of C14-type Laves structure. With the increase of Mo content, the maximum and reversible hydrogen absorption capacity decreased, the slope factor Hf increased. Among the studied alloys, (Ti0.85Zr0.15)1.1Cr0.95Mo0.05Mn had the best overall properties for practical application of hydrogen storage materials. The maximum and reversible hydrogen storage capacity were 1.76 ?wt% and 1.09 ?wt%, the slope factor Hf was 0.51, and its dissociation enthalpy (ΔHd) and entropy change (ΔSd) were 23.1 ?kJ ?mol?1H2, 93.8J ?K?1mol?1H2 at 303K, respectively. By studying the dissociation pressures of the synthesized metal hydrides, it was found that Mo had a special effect on the dissociation pressure of Ti–Zr–Cr–Mo–Mn alloys. Among the four alloys, (Ti0.85Zr0.15)1.1Cr0.95Mo0.05Mn alloy had the largest hydrogen absorption capacity and the fastest hydrogen desorption rate, which can meet the commercialization demand of hydrogen fuel cell hydrogen supply system.  相似文献   

3.
The development of hydrogen energy is hindered by the lack of high-efficiency hydrogen storage materials. To explore new high-capacity hydrogen storage alloys, reversible hydrogen storage in AB2-type alloy is realized by using A or B-side elemental substitution. The substitution of small atomic-radius element Zr and Mg on A-side of YNi2 and partial substitution of large atomic-radius element V on B-side of YNi2 alloy was investigated in this study. The obtained ZrMgNi4, ZrMgNi3V, and ZrMgNi2V2 alloys remained single Laves phase structure at as-annealed, hydrogenated and dehydrogenated states, indicating that the hydrogen-induced amorphization and disproportionation was eliminated. From ZrMgNi4 to ZrMgNi2V2 with the increase of the degree of vanadium substitution, the reversible hydrogen storage capacity increased from 0.6 ?wt% (0.35H/M) to 1.8 ?wt% (1.0H/M), meanwhile the lattice stability gradually increased. The ZrMgNi2V2 alloy could absorb 1.8 ?wt% hydrogen in about 2 ?h ?at 300 ?K under 4 ?MPa H2 pressure and reversibly desorb the absorbed hydrogen in approximately 30 ?min ?at 473 ?K without complicated activation process. The prominent properties of ZrMgNi2V2 elucidate its high potential for hydrogen storage application.  相似文献   

4.
Ti-Cu-Zr-Fe-Nb ultrafine structure-dendrite composites were designed by inducing Nb and more Ti to a Ti-Cu-Zr-Fe glass-forming alloy composition and prepared by copper mold casting.The composite alloys consist of β-Ti dendrites and ultrafine-structured CuTi2 and CuTi phases as well as a trace amount of glassy phase.The volume fraction of β-Ti dendrites increases with the increase in content of Nb which acted as the β-Ti phase stabilizer in the alloys.The composites exhibit high compressive yield strength exceeding1200 MPa,maximum strength around 1800 MPa and low Young’s modulus around 48 GPa.The plasticity of the alloys is strongly influenced by the volume fraction and morphology of the dendritic β-Ti phase,and the compressive plastic strain was enlarged from 5.9%for the 4 at%Nb alloy to 9.2%for the 8 at%Nb alloy.The preliminary cell culture experiment indicated good biocompatibility of the composite alloys free from highly toxic elements Ni and Be.These Ti-based composite alloys are promising to have potential structural and biomedical applications due to the combination of good mechanical properties and biocompatibility.  相似文献   

5.
Hydrolysis of Zr(BH_4)_4·8NH_3 in deionized water can generate high purity hydrogen at room temperature.However, the sluggish hydrolysis kinetics of Zr(BH_4)_4·8NH_3 hinders its practical use. To improve its hydrogen generation properties, the effects of magnetic stirring, changing hydrolysis solution and tuning the ammonia coordination number on the hydrolysis properties of Zr(BH_4)_4·8NH_3 were investigated. Results show that both changing hydrolysis solution and tuning the ammonia coordination number can enhance the hydrolysis kinetics.The hydrolysis kinetics properties of Zr(BH_4)_4·8NH_3 were significantly improved in MgCl_2 and CoCl_2 solutions.The Zr(BH_4)_4·8NH_3(x ≤ 8) samples were synthesized by a ball-milling method with different ammonization time(10, 60 and 180 min). Both the hydrolysis kinetics and hydrogen yield of Zr(BH_4)_4·8NH_3(x ≤ 8) were enhanced as the ammonia coordination number(x) decreased. Thus, tuning ammonia coordination number is an effective way to control the hydrolysis properties of Zr(BH_4)_4·8NH_3(x ≤ 8).  相似文献   

6.
Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M =(Cr, Fe, Mo, Zr) was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula[(Ni,Si,M)-Cu_(12)]Cu_3(molar proportion) was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni_2 Si precipitates, the atomic ratio of(Ni,M)/Si was set as 2/1. Thus the designed alloy series of Cu_(93.75)(Ni/Zr)_(3.75)Si_(2.08)(Cr/Fe/Mo)_(0.42)(at%) were arc-melted into ingots under argon atmosphere, and solidsolutioned at 950 ℃ for 1 h plus water quenching and then aged at 450 ℃ for different hours. The experimental results showed that these designed alloys exhibit high hardness(HV 1.7 GPa) and good electrical conductivities(≥ 35% IACS). Specifically, the quinary Cu_(93.75)Ni_(3.54)Si_(2.08)(Cr/Fe)_(0.42)Zr_(0.21) alloys(Cu-3.32 Ni-0.93 Si-0.37(Cr/Fe)-0.30 Zr wt%) possess both a high hardness with HV = 2.5-2.7 GPa, comparable to the highstrength KLFA85 alloy(Cu-3.2 Ni-0.7 Si-1.1 Zn wt%,HV= 2.548 GPa),and a good electrical conductivity(35-36% IACS).  相似文献   

7.
The present work is devoted to the development of Fe-(B-Si)-Zr amorphous alloys with high glass-forming ability and good magnetic properties. Using the cluster-plus-glue-atom model proposed for ideal amorphous structures, [FeFe11B3Si](Fe1?xZrx) was determined as the cluster formula of Fe-(B-Si)-Zr alloys. The glass formation and thermal stability of the serial alloys, namely, [FeFe11B3Si](Fe1?xZrx) (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, and 1.0), were studied by the combination of copper mold casting, X-ray diffraction, and differential thermal analysis techniques. The maxima of glass-forming ability and thermal stability were found to occur at the compositions of [FeFe11B3Si](Fe0.6Zr0.4) and [FeFe11B3Si](Fe0.5Zr0.5). The alloys can be cast into amorphous rods with 1.5 mm diameter, and upon reheating, the amorphous alloys exhibit a large undercooled liquid span of 37 K. The saturation magnetization of the [FeFe11B3Si](Fe0.5Zr0.5) amorphous alloy was measured to be 1.4 T.  相似文献   

8.
Rare-earth AB5-type La–Ni–Al hydrogen storage alloys are widely studied due to their extensive application potentials in hydrogen isotope storage, hydrogen isotope isolation and hydrogen compressors, etc. Good hydriding/dehydriding kinetics, easily activation, high reversibility are important factors for their practical application. However, their overall hydrogen storage performance, especially plateau pressure and hydrogen absorption/desorption durability need to be further optimized. In this study, the microstructures and the hydrogen storage properties of as-cast, annealed, and melt-spun LaNi3.95Al0.75Co0.3 alloys were investigated. The experimental results of XRD and SEM showed that all alloys contained a pure CaCu5 type hexagonal structure LaNi4Al phase. The cell volume increased in an order of annealed ?> ?melt-spun ?> ?as-cast, resulting in a lower hydrogen absorption/desorption plateau pressure and a more stable hydride phase. The hydrogen storage capacity of three alloys was almost the same. The slope factor of the annealed and melt-spun alloys is smaller than the as-cast alloy, indicating that heat-treatment process can make the alloys more uniform. For the cycle stability of the alloys, the hydrogen absorption rate of the annealed alloy and melt-spun alloy was much faster than that of the as-cast alloy after 500 cycles. The melt-spun alloy showed high pulverization resistance during hydrogen absorption/desorption, and exhibited an excellent cycling retention of 99% after 500 cycles, suggesting that melt-spinning process can enhance the cycle stability and improve the cycle life of the alloy.  相似文献   

9.
The microalloying effect of yttrium on the crystallization behaviors of (Zr0.525Al0.10Ti0.05Cu0.179Ni0.146)100-x Yx, and (Zr0.55Al0.15-Ni0.10Cu0.20)100-x Yx (x=0, 0.4, and 1, thus the two alloy systems were denoted as Zr52.5, Zr52.5Y0.4, Zr52.5Y1, and Zr55, Zr55Y0.4, Zr55Y1, respectively) was studied. Transmission electron microscopy (TEM) results suggested that the crystalline phases were different in the two Zr-based alloys and with different yttrium contents. ZrNi-phase and Al3Zr5 phase precipitations can be well explained by the mechanisms of nucleation and growth. Al3Zr5 phase is mainly formed by a peritectic-like reaction, while ZrNi-phase by a eutectic reaction. The contents of elements Y, Al, and Ti may dominate the reaction types. The orientation relationship between Y2O3 particles and Al3Zr5 phase is also discussed.  相似文献   

10.
The effect of a small amount of Zr addition on the temperature-dependent stability of Laves phase particles and mechanical properties of Fe-13.5Cr-4.73Al-2.07Mo-(0.34–0.5)Nb-(0.65–0.98)Ta-(0–0.33)Zr (wt. %) ferritic alloys was investigated in the present study. The designed alloy ingots were hot-rolled, aged at 1073 ?K for 24 ?h, and then re-treated at 1273 ?K, 1323 ?K, 1373 ?K, and 1473 ?K for 1 ?h, respectively. It was found that the Zr addition could not only stabilize the Fe2M Laves phase (M ?= ?Mo,Nb,Ta,Zr) to a much higher temperature, but also induce the formation of stable Fe23Zr6 phase. The high-temperature (HT) microstructural stability of the alloys significantly was improved, as evidenced by the fact that a certain amount (0.66–1.19%) of precipitates (Fe2M, Fe23Zr6, and core(Fe23Zr6)-shell(Fe2M)-structured particles) with an appropriate size (~1.0 ?μm) uniformly distributed in the ferritic matrix even after being re-treated at 1473 ?K. Particularly, the formation of core-shell-structured particles at HTs was studied from the viewpoint of both solid solubility and diffusion coefficient of M in the matrix. All these aged alloys exhibited prominent mechanical properties at both room and elevated temperatures, showing high yield strength with σYS ?= ?490–560 ?MPa at room-temperature and σYS ?= ?80–85 ?MPa at 1073 ?K. The strengthening effect was further discussed in light of various strengthening mechanisms, and the calculated strength are in good agreement with the experimental results.  相似文献   

11.
Based on the quaternary Ti41Zr25Be29Al5 glassy alloy with a critical diameter of 7 mm reported not long ago, an obvious enhancement of glass-forming ability (GFA) has been realized in this alloy by the addition of Cu element. A series of (Ti41Zr25Be29Al5)100?xCux (x=0, 2, 5, 7, 9, 11 at%) glassy alloys have been developed and some of them can be cast into one-centimeter diameter fully glassy rods by copper mold suction casting. It has been found that Cu addition could stabilize the liquid phase and suppress the crystallization, resulting in improvement of the GFA of the alloy. The addition of Cu also increases the compressive strength of the alloy and the (Ti41Zr25Be29Al5)91Cu9 glassy alloy possesses a specific strength (defined as yield strength/density) of 4.13×105 Nm/kg, which is much higher than most other reported centimeter-sized bulk metallic glasses. The present result suggests that the newly developed (Ti41Zr25Be29Al5)91Cu9 glassy alloy is a good candidate for structural applications because of its good glass-forming ability and mechanical properties.  相似文献   

12.
Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun(Ni_(0.6)Nb_(0.4-y)Ta_y)_(100-x)Zr_x with y=0, 0.1 and x=20, 30 was studied. The result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T 400 °C, even in a hydrogen atmosphere(1-10 bar), the amorphous structure was retained. The crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studied by the volumetric method,and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 k J/mol for x=30 to ~9 k J/mol for x=20. The analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.  相似文献   

13.
Ti_(50)Zr_(27)Cu_8Ni_4Co_3Fe_2Al_3Sn_3(at%) amorphous filler metal with low Cu and Ni contents in a melt-spun ribbon form was developed for improving mechanical properties of Ti–6Al–4V alloy brazing joint through decreasing brittle intermetallics in the braze zone. Investigation on the crystallization behavior of the multicomponent Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous alloy indicates the high stability of the supercooled liquid against crystallization that favors the formation of amorphous structure. The Ti–6Al–4V joint brazed with this Ti-based amorphous filler metal with low total content of Cu and Ni at 1203K for 900s mainly consists of α-Ti, β-Ti,minor Ti–Zr-rich phase and only a small amount of Ti_3Cu intermetallics, leading to the high shear strength of the joint of about 460 MPa. Multicomponent composition design of amorphous alloys is an effective way of tailoring filler metals for improving the joint strength.  相似文献   

14.
利用X射线衍射和磁性测量研究Co80+xZr20-x(x=0,1,2,3,4)合金、 快淬薄带的结构与磁性. 结果表明, 所有样品的比饱和磁化强度均较大, 且在实验范围内随退火温度的升高而增加; 经750℃热处理2 h后, Co81Zr19样品的比饱和磁化强度达到最大值128 (A·m2)/kg; Co82Zr18快淬样品在25 m/s速率下的矫顽力最大, 为60 kA/m, 根据该样品中Co5Zr相的含量较大可知, Co5Zr相为Co-Zr合金的硬磁相; 由初始磁化曲线可知, 所有样品的矫顽力机制为成核模型.   相似文献   

15.
Microstructural evolution and phase transformation induced by different heat treatments of the hypereutectic aluminium-silicon alloy, Al-25Si-5Fe-3Cu (wt%, signed as 3C), fabricated by traditional cast (TC) and spray forming (SF) processes, were investigated by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy and X-ray diffraction techniques. The results show that Al7Cu2Fe phase can be formed and transformed in TC- and SF-3C alloys between 802–813 K and 800–815 K, respectively. The transformation from β-Al5FeSi to δ-Al4FeSi2 phase via peritectic reaction can occur at around 858–870 K and 876–890 K in TC- and SF-3C alloys, respectively. The starting precipitation temperature of δ-Al4FeSi2 phase as the dominant Fe-bearing phase in the TC-3C alloy is 997 K and the exothermic peak about the peritectic transformation of δ-Al4FeSi2→β-Al5FeSi is not detected in the present DSC experiments. Also, the mechanisms of the microstructural evolution and phase transformation are discussed.  相似文献   

16.
The hydrogen storage of(TiZr_(0.1))_xCr_(1.7-y)Fe_yMn_(0.3)(1.05x1.2,0.2y0.6)alloys,prepared by Ar plasma arc melting,were investigated by X-ray diffraction,pressure-composition-temperature(PCT).The results indicated that all(TiZr_(0.1))_xCr_(1.7-y)Fe_yMn_(0.3)(1.05≤x≤1.2,0.2≤y≤0.6)alloys were determined as C14-type Laves phase,the cell parameters a,c and unit cell volume of(TiZr_(0.1))xCr_(1.1)Fe_(0.6)Mn_(0.3)(1.05≤x≤1.2)alloys increased with increasing the(TiZr)super-stoichiometry from 1.05 to 1.2,and the value of a/c almost unchanged.The hydrogen absorption and desorption plateau pressure decreased from 5.6,4.4–2.6,2.2 MPa with the increase of(TiZr)super-stoichiometry from 1.05 to1.2 at 274 K respectively,and the hydrogen desorption plateau pressure decline was not obvious when the(TiZr)super-stoichiometry exceeded 1.15.The(TiZr_(0.1))_(1.1)Cr_(1.1)Fe_(0.6)Mn_(0.3)alloy had the best comprehensive properties about the maximum and reversible hydrogen storage capacity was 1.79 and 1.45 wt%respectively.The cell parameters a,c and unit cell volume of(TiZr_(0.1))_(1.1)Cr_(1.7-y)Fe_yMn_(0.3)(0.2≤y≤0.6)alloys increased as the ratio of Fe/Cr content decreased.The hydrogenation and dehydrogenation plateau pressure decreased from 4.5,3.4–1.0,0.9 MPa respectively and the maximum hydrogen storage capacity increased from 1.79 to 2.0 wt%as the Fe content reduced from 0.6 to 0.2 at274 K.The maximum and the reversible hydrogen storage capacity were about 2.0 and 1.65 wt%as the ratio of Fe/Cr was 0.13(ie,(TiZr_(0.1))_(1.1)Cr_(1.5)Fe_(0.2)Mn_(0.3)alloy),its relative molar enthalpy of dissociation hydrogen was24.30 kJ/mol H_2.  相似文献   

17.
The composition characteristics of maraging stainless steels were studied in the present work investigation using a cluster-plus-glue-atom model. The least solubility limit of high-temperature austenite to form martensite in basic Fe–Ni–Cr corresponds to the cluster formula [NiFe12]Cr3,where NiFe12is a cuboctahedron centered by Ni and surrounded by 12 Fe atoms in FCC structure and Cr serves as glue atoms. A cluster formula [NiFe12](Cr2Ni) with surplus Ni was then determined to ensure the second phase(Ni3M) precipitation,based on which new multicomponent alloys [(Ni,Cu)16Fe192](Cr32(Ni,Mo,Ti,Nb,Al,V)16) were designed. These alloys were prepared by copper mould suction casting method,then solid-solution treated at 1273 K for 1 h followed by water-quenching,and finally aged at 783 K for 3 h. The experimental results showed that the multi-element alloying results in Ni3M precipitation on the martensite,which enhances the strengths of alloys sharply after ageing treatment. Among them,the aged [(Cu4Ni12)Fe192](Cr32(Ni8.5Mo2Ti2Nb0.5Al1V1)) alloy(Fe74.91Ni8.82Cr11.62Mo1.34Ti0.67Nb0.32Al0.19V0.36Cu1.78wt%) has higher tensile strengths with YS?1456 MPa and UTS?1494 MPa. It also exhibits good corrosion-resistance in 3.5 wt% NaCl solution.  相似文献   

18.
a’ phase based Ti-Nb-Zr alloys with low Young’s modulus and high strength were prepared,and their microstructure and mechanical properties were characterized.It was revealed that the lattice expansion by Nb and Zr addition as well as the presence of a few of a" martensite might be responsible for the low modulus achieved.Ti-15Nb-9Zr alloy,with ultralow modulus of 39 GPa and high strength of850 MPa,could be a potential candidate for biomedical applications.  相似文献   

19.
采用单辊快淬法制备Fe40Co40Zr7V2B9Ta2非晶合金薄带,并对该合金在不同温度下进行热处理.利用差热分析(DTA)、X射线衍射(XRD)、扫描电镜(SEM)和振动样品磁强计(VSM)测量合金的热性能、微观结构及磁性能.结果表明:Fe40Co40Zr7V2B9Ta2合金的初始晶化产物为α-FeCo相,高温时析出ZrCo3B2,Co23Zr6和ZrB2相;薄带横断面的形貌在快淬态和300℃退火后,合金的自由面呈网状结构,贴辊面呈枝状结构;高于550℃退火,横断面呈颗粒状;550℃退火后合金的矫顽力(Hc)最小,高于550℃退火,Hc随退火温度的升高而增大.  相似文献   

20.
Joining of Ti_2AlNb alloy to TiAl intermetallics was conducted by the newly-developed Ti–Ni–Nb–Zr brazing filler alloy.The microstructure evolution of the joints was investigated by scanning electron microscope (SEM),energy dispersive spectrometer (EDS) and electron backscatter diffraction (EBSD).The macro-micro mechanical properties were studied by shear test and nano-indentation test.Typical interfacial microstructures across the brazing seam were Ti_2AlNb substrate,α_2-Ti_3Al+β-Ti,γ-TiAl+Ti_2Ni+TiNi+α_2-Ti_3Al,α_2-Ti_3Al+β-Ti,TiAl substrate.The Ti_2Ni phase were firstly dissolved in the joints brazed at 1000°C for 10 min and then precipitated after a prolonged holding time of 15 min.The nano-indentation test revealed that Ti_2Ni phase exhibited the highest hardness of 12.60 GPa.The joints brazed at 1000°C/15 min presented the maximum shear strength of271 MPa.The dissolution and precipitation behavior of Ti_2Ni phase was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号