共查询到15条相似文献,搜索用时 0 毫秒
1.
蛋白质生物大分子在电极上的电子转移过程是生物电化学领域的重要研究课题。电化学家认为以蛋白质-电极之间的电子转移过程模拟生物体中蛋白质-蛋白质之间的电子转移有可能提供某些解释生物体中电子传递机理的信息。细胞色素c(Cyt.c)是一种典型的传递电子的蛋白质,其辅基血红素铁为氧化还原活性中心。 相似文献
2.
氯代挥发性有机物(chlorinated volatile organic compounds, Cl-VOCs)的化学稳定性好、毒性高、半衰期长,其去除技术一直都是环境领域的一个重点.光、电催化技术因其催化效率高、工艺设备简单、反应条件温和以及经济环保等工艺优势,受到广泛的关注.本文在对Cl-VOCs的去除方法进行简要分析的基础上,重点综述了光催化降解和电催化脱氯技术去除Cl-VOCs的研究进展.首先对Cl-VOCs的光、电催化反应机制及其优缺点进行简要总结;其次,结合光、电催化反应过程以及Cl-VOCs自身结构特点与催化剂的关系等方面,总结了催化活性的影响因素以及催化剂的种类和特性,为后期Cl-VOCs的有效处理和资源化利用以及高性能的催化剂的合理设计提供参考和依据;最后,对Cl-VOCs光、电催化去除领域潜在的发展趋势进行了展望. 相似文献
3.
4.
5.
乙醇作为碳源的碳纳米管阵列氧化铝模板法制备 总被引:2,自引:1,他引:2
以乙醇为碳源在低气压条件下利用化学气相沉积(CVD)技术在多孔氧化铝模板中制备了碳纳米管阵列. 扫描电子显微镜(SEM)和低分辨透射电子显微镜(TEM)成像结果表明, 所得碳纳米管的外径和长度高度统一, 完全受制于所制备的多孔氧化铝模板阵列纳米孔道. 高分辨透射电子显微镜(HRTEM)成像表明, 所得碳纳米管的管壁石墨化程度虽与自由生长的多壁碳纳米管管壁石墨化程度还有一定差距, 但已明显高于目前文献所报道的此类碳纳米管. 作为对比, 在相同生长条件下使用乙炔作为碳源也得到了碳纳米管阵列, HRTEM成像结果和Raman光谱证明, 其管壁的石墨化程度较前者要低得多. 本文提出羟基自由基对无定形碳的刻蚀作用对碳纳米管管壁的石墨化有重要影响; 另外, 初步探讨了多孔氧化铝模板阵列纳米孔道的光滑程度对碳纳米管生长的影响. 相似文献
6.
有机氯脱氯转化的铁还原菌与铁氧化物界面的交互反应 总被引:6,自引:0,他引:6
脱色希瓦氏菌(Shewanella decolorationis, S12)是一株异化铁还原菌, 在厌氧条件下能够以三价铁(Fe(Ⅲ))为末端电子受体, 将其还原成亚铁(Fe(Ⅱ)). 本研究以脱色希瓦氏菌、铁氧化物(a- FeOOH)与有机氯(三氯甲烷和五氯酚)三者为基本要素, 构建了一个有机氯脱氯转化的铁还原菌-针铁矿界面交互反应体系. 结果表明, S12对照体系的直接脱氯效果较弱, a-FeOOH非生物体系具有一定的脱氯效果, S12+a-FeOOH交互反应体系的脱氯转化动力学显著提高. 体系中铁物种浓度的变化和氧化还原性能的表征结果显示, 铁还原菌S12促进界面脱氯转化的主要原因是S12能够有效促进吸附态Fe(Ⅱ)的生成, 并持续提高体系的还原能力. 这些结果将为铁还原菌-铁氧化物界面可还原性毒害物的脱毒转化研究提供借鉴. 相似文献
7.
碳纳米管垂直阵列(VACNTs)具有高长径比、优异的力学性能,在仿壁虎干黏附材料领域具有广阔的应用前景.但适合其生长的硅基底本身硬脆以及阵列与生长基底结合力较弱是制约VACNTs在干黏附材料中应用发展的主要问题.本文提出一种简单高效的转移方法,将VACNTs转移至柔韧的聚碳酸酯(PC)基底,再进行切向黏附性能测试,并从顶部形貌结构与石墨化程度两方面分析切向黏附强度测试结果.对转移工艺进行优化以后,VACNTs与PC之间形成较强结合力,底端转移和顶端转移后获得2种不同的顶部结构.黏附性能测试结果表明,VACNTs切向黏附强度均随法向预载荷增加而增大,当施加16N/cm2的预载荷时,底端转移VACNTs的切向黏附强度约5 N/cm2,顶端转移VACNTs的切向黏附强度约2.8 N/cm2.该转移方法具有普遍适用性,不受转移阵列面积的限制,转移后的黏附材料整体柔韧性提高,为VACNTs作为仿壁虎干黏附材料的应用创造了有利条件. 相似文献
8.
采用白磷还原法制备了磷修饰的金纳米粒子(Au-PNPs),Au-PNPs的粒径能够通过改变氯金酸与白磷的投料摩尔比进行有效调控.采用X-射线粉末衍射光谱(XRD)、傅里叶变换红外光谱(FT-IR)和透射电子显微镜(TEM)和电化学测试来表征Au-PNPs的形貌、结构和表面组成.循环伏安测试表明,在pH7.4的磷酸缓冲溶液中,Au-PNPs修饰电极对葡萄糖电化学氧化有良好的催化性能.通过与柠檬酸钠还原法制得的金纳米粒子(Au-CitNPs)的电化学性质比较,发现Au-PNPs对葡萄糖的电催化氧化具有优良的稳定性.基于此Au-PNPs修饰电极的葡萄糖无酶电化学传感器对于葡萄糖检测具有宽的线性检测范围(9.0×10-6~1.8×10-2mol/L)和低的检出限(5.0×10-6mol/L). 相似文献
9.
Zn掺杂TiO2纳米管电极制备及其对五氯酚的光电催化降解 总被引:2,自引:0,他引:2
采用阳极氧化法在Ti基底上制备TiO2纳米管电极,再通过浸渍法制备出Zn掺杂TiO2纳米管电极.采用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、电子探针显微分析(EPMA)、紫外-可见漫反射吸收光谱(DRS)技术对其进行表征,电极表面分布有均匀的纳米管状阵列,管径50~90nm,管长约200nm,管壁厚约为15nm,锐钛矿型TiO2,Zn元素以ZnO小团簇形态沉积在TiO2纳米管电极表面,与TiO2纳米管电极相比起始吸收带边红移近20nm.分别使用Zn掺杂TiO2纳米管电极和TiO2纳米管电极对相同五氯酚(PCP)溶液(初始浓度为20mg/L,电解质Na2SO4浓度为0.01mol/L,初始pH为7.03)进行光电催化降解120min.结果表明:在紫外光(400μW/cm2)或可见光(4500μW/cm2)的照射下,Zn掺杂TiO2纳米管电极对PCP的降解率分别为73.5%和18.4%,而TiO2纳米管电极对PCP的降解率分别为48.5%和3.2%.Zn掺杂TiO2纳米管电极光电催化降解PCP的准一级反应动力学常数分别为TiO2纳米管电极的2.0倍和5.8倍,且其光电催化性能与Zn掺杂浓度有关,最优掺杂浓度为0.909%.Zn掺杂TiO2纳米管电极的稳定性良好. 相似文献
10.
11.
纳米铁颗粒物表征及其对2, 4-二氯苯酚的脱氯降解性能 总被引:1,自引:0,他引:1
对纳米铁超细粉进行了透射电子显微镜(TEM)、X射线衍射(XRD)、X光电子能谱(XPS)等结构表征, 并研究了其对2,4-二氯苯酚的吸附降解性能. 结果表明, 实验所用纳米铁超细粉呈核-壳型结构, 颗粒粒径为30~40 nm, 其表面含有大量的Fe3O4钝化氧化层; 为去除纳米铁表面的钝化层, 提高其活性, 对其进行盐酸酸化, 探讨了酸化前后纳米铁在不同投加量下对2,4-二氯苯酚的降解去除情况. 实验发现, 活化前的纳米铁对2,4-二氯苯酚的去除主要为吸附过程, 活化后的纳米铁则能够迅速与2, 4-二氯苯酚发生降解反应. 当铁的投加量为150 mg时, 反应溶液中可检测到苯酚、2-氯酚、4-氯酚等降解产物的出现, 说明纳米铁对2,4-二氯苯酚的降解主要为脱氯反应. 相似文献
12.
13.
Zn掺杂TiO2纳米管电极制备及其对五氯酚的光电催化降解 总被引:2,自引:0,他引:2
采用阳极氧化法在Ti基底上制备TiO2纳米管电极, 再通过浸渍法制备出Zn掺杂TiO2纳米管电极. 采用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、电子探针显微分析(EPMA)、紫外-可见漫反射吸收光谱(DRS)技术对其进行表征, 电极表面分布有均匀的纳米管状阵列, 管径50~90 nm, 管长约200 nm, 管壁厚约为15 nm, 锐钛矿型TiO2, Zn元素以ZnO小团簇形态沉积在TiO2纳米管电极表面, 与TiO2纳米管电极相比起始吸收带边红移近20 nm. 分别使用Zn掺杂TiO2纳米管电极和TiO2纳米管电极对相同五氯酚(PCP)溶液(初始浓度为20 mg/L, 电解质Na2SO4浓度为0.01 mol/L, 初始pH为7.03)进行光电催化降解120 min. 结果表明: 在紫外光(400 μW/cm2)或可见光(4500 μW/cm2)的照射下, Zn掺杂TiO2纳米管电极对PCP的降解率分别为73.5%和18.4%, 而TiO2纳米管电极对PCP的降解率分别为48.5%和3.2%. Zn掺杂TiO2纳米管电极光电催化降解PCP的准一级反应动力学常数分别为TiO2纳米管电极的2.0倍和5.8倍, 且其光电催化性能与Zn掺杂浓度有关,最优掺杂浓度为0.909%. Zn掺杂TiO2纳米管电极的稳定性良好. 相似文献
14.