首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
以人脸表情视频序列为研究对象,介绍了人脸表情识别的一般过程,给出了基于SVM的人脸表情识别方法,讨论了面部表情强度度量方法。通过分析人脸表情的变化,在L-K光流算法基础上应用修正的特征点跟踪方法提取面部特征信息,使用SVM建立人脸表情模型和强度模型,进行表情识别,并对高兴表情进行强度等级分类。实验结果证明了提出方法的有效性。  相似文献   

2.
在自然环境中各种因素的干扰下,人脸表情信息匹配的识别率受到严重影响,针对此问题,提出一种改进的基于VGGNet16(visual geometry group network16)的网络模型.在VGGNet16模型的侧方添加一系列的侧输出层,并在该侧输出层添加不同的卷积核,通过上采样和下采样方法连接侧输出层的上下2层,...  相似文献   

3.
提出一种多特征与卷积神经网络相结合的人脸表情识别方法。先对人脸表情图像进行预处理,根据人脸面部"三庭五眼"的特征和人脸的几何模型对图像进行裁剪,采用双三次插值法对图像进行缩放。然后提取样本的局部方向模式、二维离散小波变换、Sobel算子三种特征。将这三种特征以三通道图像的形式输入卷积神经网络中进行自适应融合,融合后的特征通过Softmax层进行分类。在CK+数据库的识别率为99.51%,在RAF-DB的识别率为72.1%,识别率都有所提升,验证了所提方法的有效性。  相似文献   

4.
提出基于多特征集成分类器的人脸表情识别新算法。新算法首先对预处理后的人脸表情图像通过3种不同的特征提取方法来提取不同类型的表情特征,然后对不同特征构造不同的分类器,最后构造一个基于神经网络的集成分类器模型,对这3个分类器的输出进行决策融合,从而实现人脸表情的最终识别。在JAFFE人脸表情数据库中的试验结果表明,所提算法的识别效果优于单个特征和单一的分类器。  相似文献   

5.
人脸表情识别一直是计算机视觉领域的一个难题.近年来,随着深度学习的飞速发展,一些基于卷积神经网络的方法大大提高了人脸表情识别的准确率,但未能充分利用人脸图像中的信息,这是由于对于面部表情识别有意义的特征主要集中在一些关键位置,例如眼睛、鼻子和嘴巴等区域,因此在特征提取时增加这些关键位置的权重可以改善表情识别的效果.为此...  相似文献   

6.
传统的视频运动人脸图像相似表情识别方法,利用小波变换提取人脸特征,后续特征分解效果不理想,导致表情识别准确度较低。为此,提出基于改进核判别算法的视频运动人脸图像相似表情识别研究。采用积分图法提取视频中的人脸表情,得到特征矩形区域。结合核判别算法对特征矩形区域进行分解得出表情特征矢量。结合弹性模板匹配法,计算和匹配表情特征矢量,得出匹配最优的表情,完成人脸图像相似表情识别。为验证所提方法的应用性能,设计仿真实验。实验结果表明,与传统方法相比,所提方法的表情识别准确度更高。本文设计识别方法具有应用有效性,为相关领域提供可靠依据。  相似文献   

7.
文章将NMF分解用于提取人脸表情子空间特征,并进行人脸表情识别。将人脸图像在特征脸空间上投影,得到的投影系数作为识别人脸表情的特征向量,采用K近邻分类器进行人脸表情识别。  相似文献   

8.
首先, 针对人脸表情识别问题提出一种新的多尺度特征选择网络识别方法, 该网络充分结合多尺度网络结构和特征选择结构的优点, 能更有效地提取面部静态图像中的空间信息. 其次, 为验证本文提出的多尺度特征选择网络的识别性能和泛化能力, 在两个经典的人脸表情识别数据集上与一些常用的方法进行对比和交叉验证实验. 实验结果表明, 该网络取得了更好的识别效果, 并且具有良好的泛化能力, 可以灵活地嵌入到人脸表情识别分析系统中.  相似文献   

9.
针对目前人脸表情识别存在准确率不高、模型复杂和计算量大的问题,文章提出了一种基于八度卷积改进的人脸表情识别模型(OCNN):使用改进的八度卷积进行特征提取,提高对细节特征的提取效果,降低特征图的冗余,在不增加参数的同时减少运算量,以提高特征提取性能;利用DyReLU激活函数来增强模型的学习和表达能力;使用自适应平均池化下采样层代替全连接层,以减少参数;将模型在大规模数据集上进行预训练,并在FER2013、FERPlus、RAF-DB数据集上进行模型性能验证实验。实验结果表明:训练后的模型权重为10.4 MB,在人脸表情识别数据集FER2013、FERPlus和RAF-DB上的准确率分别达到73.53%、89.58%和88.50%;与目前诸模型相比,OCNN模型的准确性高且计算资源消耗低,充分证明了该模型的有效性。  相似文献   

10.
 提出了一种自动获取控制点的人脸表情变形方法,该方法首先通过主动形状模型(Active Shape Model,ASM)算法自动提取人脸特征点,亦即控制点,然后使用基于控制点的Morphing技术,使一张中性状态的人脸平滑地过渡到有表情的人脸.  相似文献   

11.
基于SVM信息融合方法的人脸表情识别   总被引:1,自引:0,他引:1  
提出一种基于支持向量机(SVM)的信息融合方法进行人脸表情识别.该方法首先对 预处理后的人脸图像进行局部特征和整体特征的提取;然后用最小距离分类器、最近邻距离 分类器、最大相关分类器、径向基函数(RBF)神经网络分类器进行表情识别;最后构造一 个三阶的多项式支持向量机对多个分类器的输出进行决策融合以达到人脸表情识别的目的.  相似文献   

12.
针对使用深度学习提取人脸表情图像特征时易出现冗余特征,提出了一种基于多层感知机(MLP)的改进型Xception人脸表情识别网络.该模型将Xception网络提取的特征输入至多层感知机中进行加权处理,提取出主要特征,滤除冗余特征,从而使得识别准确率得到提升.首先将图像缩放为48*48,然后对数据集进行增强处理,再将这些经过处理的图片送入本文所提网络模型中.消融实验对比表明:本文模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为98.991%、99.02%和80.339%,Xception模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为97.4829%、90.476%和74.0678%,Xception+2lay模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为98.04%、84.06%和75.593%.通过以上消融实验对比,本文方法的识别正确率明显优于Xception模型与Xception+2lay模型.与其他模型相比较也验证了本文模型的有效性.  相似文献   

13.
移动端的表情识别有巨大需求,但是受算力限制,主流深度神经网络无法直接移植.为此,设计了一个浅层网络,在节约计算量的同时保证了识别率.网络中使用三组堆叠而成的卷积层,有助于增大感受野,便于更好地提取特征,这是提升识别率的关键;使用全局平均池化层,避免引入额外的全连接层,大幅降低参数量,在训练样本不足的情况下,降低模型过拟...  相似文献   

14.
基于LabVIEW 的面部表情识别系统的设计   总被引:1,自引:0,他引:1  
针对传统界面表现不清晰, 编程语句繁琐的问题, 基于LabVIEW 软件设计了系统的面部表情识别界面。对面部表情识别系统设计中的关键问题进行探讨, 利用Matlab, 应用离散小波理论算法进行表情图像特征提取, 并采用弹性模版匹配算法进行情绪识别。实验结果表明, 基于LabVIEW 的面部表情识别系统, 应用LabVIEW软件简单的语句设计了清晰互动的界面, 其识别率可达到85%以上。  相似文献   

15.
提出了一种基于非负矩阵分解与支持向量机相结合的面部表情识别方法。使用直方图均衡化等方法对人脸图像进行预处理,使用非负矩阵分解算法进行表情特征提取,采用支持向量机对面部表情进行分类。以Matlab为仿真工具,在日本女性人脸表情数据库上测试。取得了66.19%的识别率。  相似文献   

16.
主要研究自动人脸表情识别(FER),首先使用Gabor算法提取人脸图像的特征,再针对Gabor特征维数高、冗余大及利用传统的AdaBoost算法进行特征选择时特征间仍存在较大冗余的特点,引入了基于互信息的AdaBoost算法(MutualBoost)进行特征选择,降低特征维数和减少特征间的冗余信息量。然后再以SVM分类器进行分类。本算法在JAFFE表情库上进行测试,结果验证了算法的有效性。  相似文献   

17.
为提高人脸表情识别算法的识别率和鲁棒性,本文提出一种融合单演二值编码的人脸表情识别算法.该算法运用单演信号分析提取多尺度单演振幅、相位和方向三个正交互补的分量,使用单演二值编码对该三种分量的每个尺度进行编码及划分为多个矩形块子区域,并采用分块Fisher线性判别对其降维并提高识别率.实验结果表明:所提算法比传统人脸表情识别算法具有更高的识别率.此外,遮挡对比实验证明了所提算法比传统算法有更好的鲁棒性.  相似文献   

18.
针对传统表情识别系统不能充分提取关键子区域及有效特征的缺陷,设计了基于关键子区域及特征提取的表情识别系统。首先使用面部关键点检测技术及面部编码系统筛选出关键子区域;然后对其进行特征提取。提出一种改进的局部梯度编码算子(LGC)、局部均值梯度编码算子(LMGC-HD);改进的算子具有更低的维度,能够充分地描述局部形变;且受随机噪声及边缘变化影响小。最后使用支持向量机(SVM)进行分类识别。采用CK+数据集进行实验,结果证明该系统能够有效地提高人脸表情的识别率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号