首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Epigenetic silencing in cancer cells is mediated by at least two distinct histone modifications, polycomb-based histone H3 lysine 27 trimethylation (H3K27triM) and H3K9 dimethylation. The relationship between DNA hypermethylation and these histone modifications is not completely understood. Using chromatin immunoprecipitation microarrays (ChIP-chip) in prostate cancer cells compared to normal prostate, we found that up to 5% of promoters (16% CpG islands and 84% non-CpG islands) were enriched with H3K27triM. These genes were silenced specifically in prostate cancer, and those CpG islands affected showed low levels of DNA methylation. Downregulation of the EZH2 histone methyltransferase restored expression of the H3K27triM target genes alone or in synergy with histone deacetylase inhibition, without affecting promoter DNA methylation, and with no effect on the expression of genes silenced by DNA hypermethylation. These data establish EZH2-mediated H3K27triM as a mechanism of tumor-suppressor gene silencing in cancer that is potentially independent of promoter DNA methylation.  相似文献   

2.
3.
4.
Gene polymorphism in Netherton and common atopic disease.   总被引:13,自引:0,他引:13  
Atopic dermatitis (AD) and asthma are characterized by IgE-mediated atopic (allergic) responses to common proteins (allergens), many of which are proteinases. Loci influencing atopy have been localized to a number of chromosomal regions, including the chromosome 5q31 cytokine cluster. Netherton disease is a rare recessive skin disorder in which atopy is a universal accompaniment. The gene underlying Netherton disease (SPINK5) encodes a 15-domain serine proteinase inhibitor (LEKTI) which is expressed in epithelial and mucosal surfaces and in the thymus. We have identified six coding polymorphisms in SPINK5 (Table 1) and found that a Glu420-->Lys variant shows significant association with atopy and AD in two independent panels of families. Our results implicate a previously unrecognized pathway for the development of common allergic illnesses.  相似文献   

5.
Gene regulatory network growth by duplication   总被引:18,自引:0,他引:18  
  相似文献   

6.
Gene expression as a drug discovery tool   总被引:1,自引:0,他引:1  
Evans WE  Guy RK 《Nature genetics》2004,36(3):214-215
  相似文献   

7.
ATM heterozygosity and cancer risk   总被引:6,自引:0,他引:6  
  相似文献   

8.
9.
Chemical genomics involves generating large collections of small molecules and using them to modulate cellular states. Despite recent progress in the systematic synthesis of structurally diverse compounds, their use in screens of cellular circuitry is still an ad hoc process. Here, we outline a general, efficient approach called gene expression-based high-throughput screening (GE-HTS) in which a gene expression signature is used as a surrogate for cellular states, and we describe its application in a particular setting: the identification of compounds that induce the differentiation of acute myeloid leukemia cells. In screening 1,739 compounds, we identified 8 that reliably induced the differentiation signature and, furthermore, yielded functional evidence of bona fide differentiation. The results indicate that GE-HTS may be a powerful, general approach for chemical screening.  相似文献   

10.
11.
12.
13.
14.
Stem cells, asymmetric division and cancer   总被引:5,自引:0,他引:5  
Clevers H 《Nature genetics》2005,37(10):1027-1028
  相似文献   

15.
Bernards R 《Nature genetics》2004,36(4):319-320
  相似文献   

16.
17.
TGF-beta signaling in tumor suppression and cancer progression   总被引:44,自引:0,他引:44  
Epithelial and hematopoietic cells have a high turnover and their progenitor cells divide continuously, making them prime targets for genetic and epigenetic changes that lead to cell transformation and tumorigenesis. The consequent changes in cell behavior and responsiveness result not only from genetic alterations such as activation of oncogenes or inactivation of tumor suppressor genes, but also from altered production of, or responsiveness to, stimulatory or inhibitory growth and differentiation factors. Among these, transforming growth factor beta (TGF-beta) and its signaling effectors act as key determinants of carcinoma cell behavior. The autocrine and paracrine effects of TGF-beta on tumor cells and the tumor micro-environment exert both positive and negative influences on cancer development. Accordingly, the TGF-beta signaling pathway has been considered as both a tumor suppressor pathway and a promoter of tumor progression and invasion. Here we evaluate the role of TGF-beta in tumor development and attempt to reconcile the positive and negative effects of TGF-beta in carcinogenesis.  相似文献   

18.
19.
Mulibrey nanism (for muscle-liver-brain-eye nanism, MUL; MIM 253250) is an autosomal recessive disorder that involves several tissues of mesodermal origin, implying a defect in a highly pleiotropic gene. Characteristic features include severe growth failure of prenatal onset and constrictive pericardium with consequent hepatomegaly. In addition, muscle hypotonia, J-shaped sella turcica, yellowish dots in the ocular fundi, typical dysmorphic features and hypoplasia of various endocrine glands causing hormonal deficiency are common. About 4% of MUL patients develop Wilms' tumour. MUL is enriched in the Finnish population, but is rare elsewhere. We previously assigned MUL to chromosome 17q22-q23 and constructed a physical contig over the critical MUL region. The region has now been further refined by haplotype analysis and new positional candidate genes have been localized. We identified a gene with four independent MUL-associated mutations that all cause a frameshift and predict a truncated protein. MUL is ubiquitously expressed and encodes a new member of the RING-B-box-Coiled-coil (RBCC) family of zinc-finger proteins, whose members are involved in diverse cellular functions such as developmental patterning and oncogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号