共查询到20条相似文献,搜索用时 15 毫秒
1.
短时交通流量具有非线性、随机性等特点,如何准确地进行短时交通流量预测,是智能交通系统研究的一项关键内容。传统的预测模型不能实时反映短时交通流量变化特点,同时BP神经网络的交通流量预测存在收敛速度缓慢、易陷入局部极值、预测精度低等缺点。为了提高短时交通流量预测精度,提出了一种基于改进粒子群算法(IPSO)优化BP神经网络的复合预测模型,引入相对误差指标作为预测模型的评价指标,并利用实测的道路短时交通流数据对所构建的预测模型进行验证。结果表明,所提出的预测模型在短时间内寻出全局最优解,具有较好的预测精度,提高了短时交通流量预测的准确性和可靠性。 相似文献
2.
基于BP神经网络的交通流量预测设计 总被引:3,自引:0,他引:3
在研究交通流量特性的基础上,以交通流量控制为最终目标,建立了基于BP(Back Propagation)神经网络的交通流量预测模型.以某市某三叉口路段为例进行仿真模拟,结果表明预测系统能较准确地预测出交通流量状况. 相似文献
3.
针对短时交通流量预测的难题,在传统贝叶斯组合模型进行改善的基础上,提出一种改进型贝叶斯组合模型.该模型只根据各基本预测模型当前时刻之前几个交通流量的预测表现,通过提出的分配算法实时更新组合模型中各个基本预测模型的权重,从而改善了传统贝叶斯组合模型权重计算迭代步长过长的缺陷,提高了贝叶斯组合模型对各个基本预测模型预测精度的灵敏性.通过对实地的交通流量的预测发现,基于改进型贝叶斯组合模型的预测精度不仅优于单一的预测方法,而且也优于传统的贝叶斯组合模型,从而证明了改进型贝叶斯组合模型有效提高预测的可靠性和具有一定的实用性. 相似文献
4.
交通流量预测是智能交通系统中非常重要的研究领域,传统的预测方法在交通流量预测中有着非常广泛的应用.但是,在短时交通流量预测中,由于其影响因素错综复杂,传统的预测方法对于短时交通流量不能很好地进行预测.随着机器学习和数据挖掘各种理论的不断提出及完善,机器学习和数据挖掘与交通流量预测的结合是智能交通系统未来发展的一个重要方向.本文利用SVM (support vector machine)构建了短时交通流量预测模型,并利用遗传算法(genetic algorithm)对SVM的惩罚参数C和核参数σ进行优化,同时比较SVM中不同核函数,包括多项式核函数(polynomial kernel)和径向基核函数(RBF kernel)的预测效果.径向基SVM (RBF SVM)训练时间要比多项式SVM (polynomial SVM)短,预测准确率和精度也要比多项式SVM要好.从仿真结果上看,SVM非常适合应用于短时交通流量预测,能够取得很好的预测效果与精度. 相似文献
5.
本文首次将诱导有序加权平均(IOWA)算子应用到短时交通流预测中,建立了以整体预测误差平方和最小为目标的组合预测模型。在分析短时交通流预测模型的基础上,本文选取了指数平滑法、季节自回归求和移动平均模型(SARIMA)、BP神经网络模型对短时交通流进行预测,再用IOWA算子将这三种模型进行组合预测。最后进行实例验证,通过MAE、MSE和MAPE三项指标比较分析四种模型的预测效果。结果证明,IOWA算子组合预测模型明显优于其他的预测模型,有效地提高了短时交通流的预测精度。 相似文献
6.
《四川理工学院学报(自然科学版)》2015,(6):52-57
针对城市短时交通流量具有复杂性和非线性等特点,提出了基于人工蜂群算法(ABC)优化小波神经网络对短时交通流量预测分析模型。以小波神经网络(WNN)为基础,将以前城市采集的交通流量作为预测样本,通过人工蜂群算法优化WNN网络结构、权值和阈值,并建立城市短时交通流量预测数学模型。实验仿真表明,所提出的算法预测结果比仅使用WNN算法以及粒子群优化BP神经网络算法效率更高,是一种有效可靠的交通流量预测方法。 相似文献
7.
8.
交通流诱导系统是智能交通系统领域中一项重要的研究内容,而交通流量的预测问题则是交通流诱导系统的核心问题.因此,能够实时准确地预测交通流量成为诱导系统是否能够有效实现的关健问题.根据交通流的特性,分析交通数据采集过程中错误数据产生的原因,提出相应的处理方法,并在此基础上采用Elman神经网络对智能交通系统的流量预测进行建模.该系统采用C#并结合Matlab进行开发,通过Elman神经网络算法实现流量的预测,并采用图表的方式直观地显示预测结果.应用结果表明:该方法可以有效地对交通流量进行预测,且预测精度可以满足实际交通诱导的需要. 相似文献
9.
文章提出了基于支持向量机的短时用水量预测模型,对城市用水量本身固有的非线性、复杂性和不确定性进行综合考虑。结合实例数据,对基于支持向量机的预测模型和基于BP神经网络的预测模型进行比较。结果表明,基于支持向量机的预测模型在精度、收敛时间、泛化能力、最优性等方面均优于基于BP神经网络的预测模型。 相似文献
10.
交通流预测是智能运输系统中的路径诱导和交通流控制的必要条件,其实时性和可靠性直接关系到交通管理与控制的效果,因此本文利用利用遗传算法对BP神经网络的权值、阈值进行优化,从而应用强大非线性逼近能力实现交通流量的准确预测,并且通过实验进行算法的仿真,结果表明,BP神经网络经遗传算法优化后,精度得到提高,而且BP神经网络对交通流量的预测是可行的。 相似文献
11.
王惟 《太原师范学院学报(自然科学版)》2015,(2):28-32
提出一种粒子群优化神经网络的预测方法,首先基于改进的量子行为粒子群算法对神经网络进行训练,以保证各权值和阈值能得到最优解,同时对训练样本进行了基于聚类算法的优选.最后进行了仿真验证,证明本文方法用于短时交通流量预测可以获得较高的精度并且误差稳定,为交通流量预测的实际应用提供了一种参考. 相似文献
12.
13.
交通出行在人们的生活中占据了重要的地位,准确、短时交通流量预测有助于实现交通控制.本文采用基于高斯核函数的Nadaraya-Watson估计方法对短时交通流量进行了预测.以所选取路段的车流高峰时段为研究对象,根据当前时刻的车流量对下一时刻的流量值进行预测,其中相邻两时刻的时间间隔为5分钟;就所选的高斯核函数而言,根据试凑法,选定核函数带宽为8.结果表明,该方法的预测效果良好,其均等系数为0.996545243,达到了很好的预测效果. 相似文献
14.
神经网络方法在城市需水量预测中的应用 总被引:2,自引:0,他引:2
本文详细阐述了采用BP神经网络和模糊神经网络进行城市需水预测的方法,并将这两种方法和灰色预测模型应用到石河子市需水预测的实证研究中.通过对这三种方法进行比较研究,发现在相关因素数据比较齐全时,两种神经网络的模拟结果精度较高,模糊神经网络方法的模拟精度最高. 相似文献
15.
为了提高BP神经网络预测模型对短时交通流的预测准确性,文章提出了一种基于改进遗传算法优化BP神经网络的短时交通流预测方法。由于模拟退火算法具有较强的局部搜索能力,能够在搜索过程中避免陷入局部最优解,因此引入模拟退火算法中的Metropolis接受准则来增加遗传算法的局部搜索能力,避免了遗传算法过早收敛和陷入局部最优解。通过改进的遗传算法优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解。仿真结果表明,该方法对短时交通流预测具有较好的预测精确性。 相似文献
16.
通过分析影响河道岸线变形的因素,选择合适的输入因子,建立预测河道岸线变形的BP神经网络模型,利用闽江竹歧至侯官段的实测资料对网络进行训练学习,然后进行各年份岸线位置的预测,并把预测结果与实测资料进行对比,结果表明,模型预测结果能较好的反映实际岸线的变化情况。 相似文献
17.
18.
王栋 《北华大学学报(自然科学版)》2014,(3):417-420
以陕西省为例,运用灰色关联分析法确定公路货运量的影响因素分别为地区生产总值、第一产业增加值、第二产业增加值、工业增加值、人均地区生产总值、全社会固定资产投资和社会消费品零售总额.将所确定的因素作为公路货运量的预测指标,建立基于BP神经网络的公路货运量预测模型,并对模型进行应用测试.结果表明:该模型具有较高的精度,最大误差为5.3%,可以提高公路货运量预测的准确度,为我国公路货运量的预测研究提供方法支撑. 相似文献
19.
基于BP神经网络的经济预测方法 总被引:18,自引:0,他引:18
欧邦才 《南京工程学院学报(自然科学版)》2004,2(2):11-14
在经济分析中 ,通常采用回归分析方法建立数学模型对一个经济系统进行拟合 ,进而对相关经济变量进行预测 .利用人工神经网络 (ANN)的自学习、自适应和非线性的特点 ,可通过建立经济系统的评价指标体系 ,并把经济变量数据归一化处理 ,然后送入BP神经网络中训练得出相应参数再进行预测 ,经过检验得出令人满意的结果 . 相似文献
20.
以单断面的交通流量为研究对象,采用动态Elman神经网络进行短时交通流量的预测,提出一种基于GA-Elman神经网络的交通流短时预测方法.该方法通过遗传算法优化Elman神经网络的权值和阈值,克服了Elman神经网络易陷入局部最小的缺陷,同时提高了Elman神经网络的泛化能力和预测精度.实验仿真表明,本文方法可用于城市快速路上预测实时交通流量,预测效果优于Elman、GA-BP预测模型. 相似文献