首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Wagner JR  Brunzelle JS  Forest KT  Vierstra RD 《Nature》2005,438(7066):325-331
Phytochromes are red/far-red light photoreceptors that direct photosensory responses across the bacterial, fungal and plant kingdoms. These include photosynthetic potential and pigmentation in bacteria as well as chloroplast development and photomorphogenesis in plants. Phytochromes consist of an amino-terminal region that covalently binds a single bilin chromophore, followed by a carboxy-terminal dimerization domain that often transmits the light signal through a histidine kinase relay. Here we describe the three-dimensional structure of the chromophore-binding domain of Deinococcus radiodurans phytochrome assembled with its chromophore biliverdin in the Pr ground state. Our model, refined to 2.5 A resolution, reaffirms Cys 24 as the chromophore attachment site, locates key amino acids that form a solvent-shielded bilin-binding pocket, and reveals an unusually formed deep trefoil knot that stabilizes this region. The structure provides the first three-dimensional glimpse into the photochromic behaviour of these photoreceptors and helps to explain the evolution of higher plant phytochromes from prokaryotic precursors.  相似文献   

2.
Phytochrome signalling is mediated through nucleoside diphosphate kinase 2.   总被引:24,自引:0,他引:24  
G Choi  H Yi  J Lee  Y K Kwon  M S Soh  B Shin  Z Luka  T R Hahn  P S Song 《Nature》1999,401(6753):610-613
Because plants are sessile, they have developed intricate strategies to adapt to changing environmental variables, including light. Their growth and development, from germination to flowering, is critically influenced by light, particularly at red (660 nm) and far-red (730 nm) wavelengths. Higher plants perceive red and far-red light by means of specific light sensors called phytochromes(A-E). However, very little is known about how light signals are transduced to elicit responses in plants. Here we report that nucleoside diphosphate kinase 2 (NDPK2) is an upstream component in the phytochrome signalling pathway in the plant Arabidopsis thaliana. In animal and human cells, NDPK acts as a tumour suppressor. We show that recombinant NDPK2 in Arabidopsis preferentially binds to the red-light-activated form of phytochrome in vitro and that this interaction increases the activity of recombinant NDPK2. Furthermore, a mutant lacking NDPK2 showed a partial defect in responses to both red and farred light, including cotyledon opening and greening. These results indicate that NDPK2 is a positive signalling component of the phytochrome-mediated light-signal-transduction pathway in Arabidopsis.  相似文献   

3.
Functional interaction of phytochrome B and cryptochrome 2   总被引:38,自引:0,他引:38  
Más P  Devlin PF  Panda S  Kay SA 《Nature》2000,408(6809):207-211
Light is a crucial environmental signal that controls many photomorphogenic and circadian responses in plants. Perception and transduction of light is achieved by at least two principal groups of photoreceptors, phytochromes and cryptochromes. Phytochromes are red/far-red light-absorbing receptors encoded by a gene family of five members (phyA to phyE) in Arabidopsis. Cryptochrome 1 (cry1), cryptochrome 2 (cry2) and phototropin are the blue/ultraviolet-A light receptors that have been characterized in Arabidopsis. Previous studies showed that modulation of many physiological responses in plants is achieved by genetic interactions between different photoreceptors; however, little is known about the nature of these interactions and their roles in the signal transduction pathway. Here we show the genetic interaction that occurs between the Arabidopsis photoreceptors phyB and cry2 in the control of flowering time, hypocotyl elongation and circadian period by the clock. PhyB interacts directly with cry2 as observed in co-immunoprecipitation experiments with transgenic Arabidopsis plants overexpressing cry2. Using fluorescent resonance energy transfer microscopy, we show that phyB and cry2 interact in nuclear speckles that are formed in a light-dependent fashion.  相似文献   

4.
Salter MG  Franklin KA  Whitelam GC 《Nature》2003,426(6967):680-683
The phytochromes are a family of plant photoreceptor proteins that control several adaptive developmental strategies. For example, the phytochromes perceive far-red light (wavelengths between 700 and 800 nm) reflected or scattered from the leaves of nearby vegetation. This provides an early warning of potential shading, and triggers a series of 'shade-avoidance' responses, such as a rapid increase in elongation, by which the plant attempts to overgrow its neighbours. Other, less immediate, responses include accelerated flowering and early production of seeds. However, little is known about the molecular events that connect light perception with increased growth in shade avoidance. Here we show that the circadian clock gates this rapid shade-avoidance response. It is most apparent around dusk and is accompanied by altered expression of several genes. One of these rapidly responsive genes encodes a basic helix-loop-helix protein, PIL1, previously shown to interact with the clock protein TOC1 (ref. 4). Furthermore PIL1 and TOC1 are both required for the accelerated growth associated with the shade-avoidance response.  相似文献   

5.
Yang X  Ren Z  Kuk J  Moffat K 《Nature》2011,479(7373):428-432
Light is a fundamental signal that regulates important physiological processes such as development and circadian rhythm in living organisms. Phytochromes form a major family of photoreceptors responsible for red light perception in plants, fungi and bacteria. They undergo reversible photoconversion between red-absorbing (Pr) and far-red-absorbing (Pfr) states, thereby ultimately converting a light signal into a distinct biological signal that mediates subsequent cellular responses. Several structures of microbial phytochromes have been determined in their dark-adapted Pr or Pfr states. However, the structural nature of initial photochemical events has not been characterized by crystallography. Here we report the crystal structures of three intermediates in the photoreaction of Pseudomonas aeruginosa bacteriophytochrome (PaBphP). We used cryotrapping crystallography to capture intermediates, and followed structural changes by scanning the temperature at which the photoreaction proceeded. Light-induced conformational changes in PaBphP originate in ring D of the biliverdin (BV) chromophore, and E-to-Z isomerization about the C(15) = C(16) double bond between rings C and D is the initial photochemical event. As the chromophore relaxes, the twist of the C(15) methine bridge about its two dihedral angles is reversed. Structural changes extend further to rings B and A, and to the surrounding protein regions. These data indicate that absorption of a photon by the Pfr state of PaBphP converts a light signal into a structural signal via twisting and untwisting of the methine bridges in the linear tetrapyrrole within the confined protein cavity.  相似文献   

6.
拟南芥的红光/远红光受体光敏色素(PHYs)参与花期调节过程,而铁氧还蛋白色素还原酶(FD-BRs)的一种——植物色素合成酶(HY2)对于光敏色素的合成是必不可少的。研究发现拟南芥铁氧还蛋白——AtFd2的基因缺失突变体(Fd2-KO突变体)在长日照与短日照培养条件下,较其野生型而言均表现出花期提前的表型,而且显示AtFd2与AtHY2在叶绿体中发生互作,并且Fd2突变体对光敏色素的反应受到抑制。推测At-Fd2基因的缺失可能通过影响光敏色素介导的相关生理功能进而对植株的花期进行调节。  相似文献   

7.
Regulation of flowering time by light quality   总被引:37,自引:0,他引:37  
Cerdán PD  Chory J 《Nature》2003,423(6942):881-885
The transition to flowering in plants is regulated by environmental factors such as temperature and light. Plants grown under dense canopies or at high density perceive a decrease in the ratio of red to far-red incoming light. This change in light quality serves as a warning of competition, triggering a series of responses known collectively as the 'shade-avoidance syndrome'. During shade avoidance, stems elongate at the expense of leaf expansion, and flowering is accelerated. Of the five phytochromes-a family of red/far-red light photoreceptors-in Arabidopsis, phytochrome B (phyB) has the most significant role in shade-avoidance responses, but the mechanisms by which phyB regulates flowering in response to altered ratios of red to far-red light are largely unknown. Here we identify PFT1 (PHYTOCHROME AND FLOWERING TIME 1), a nuclear protein that acts in a phyB pathway and induces flowering in response to suboptimal light conditions. PFT1 functions downstream of phyB to regulate the expression of FLOWERING LOCUS T (FT), providing evidence for the existence of a light-quality pathway that regulates flowering time in plants.  相似文献   

8.
Phytochromes and light signal perception by plants--an emerging synthesis   总被引:39,自引:0,他引:39  
Smith H 《Nature》2000,407(6804):585-591
For plants, the sensing of light in the environment is as important as vision is for animals. Fluctuations in light can be crucial to competition and survival. One way plants sense light is through the phytochromes, a small family of diverse photochromic protein photoreceptors whose origins have been traced to the photosynthetic prokaryotes. During their evolution, the phytochromes have acquired sophisticated mechanisms to monitor light. Recent advances in understanding the molecular mechanisms of phytochromes and their significance to evolutionary biology make possible an interim synthesis of this rapidly advancing branch of photobiology.  相似文献   

9.
本文报导了由抗坏血酸(维生素C)和血红素加氧酶系引起血红素降解的比较研究结果.由抗坏血酸引起的血红素降解是非特异性的,产物是胆绿素异构体的混合物;而血红素加氧酶系引起血红素的降解是立体特异性的,产物是专一性的胆绿素Ⅸ_α.  相似文献   

10.
利用高效液相色谱分别检测NADPH—细胞色素C还原酶、血红素加氧酶、胆绿素还原酶及三者混合物催化血红素降解的产物.发现由NADPH—细胞色素C还原酶和血红素加氧酶的联合活性使血红素氧化降解产生专一性的胆绿素Ⅸ_α.然后,这种胆色素又被胆绿素还原酶催化还原成胆红素Ⅸ_α,利用Sepharose-4B柱亲和层析,进一步证明上述三种酶之间存在强烈的相互作用,形成酶的三元复合物.这种复合物通过SDS—聚丙烯酰胺凝胶电泳分离产生原来的三种酶,浓度近似于等摩尔比.  相似文献   

11.
通过体外重组获得了鱼腥藻Anabaenasp.PCC7120细菌光敏色素AphA,进而将其对金属支撑型BLM进行修饰.实验发现,细菌光敏色素修饰的BLM对于红光(650nm)和远红光(700nm)具有不同的光响应信号.当用远红光照射时,产生一个正向的电流响应,用红光照射时,产生一个反向的电流响应.  相似文献   

12.
Plants use a set of light sensors to control their growth and development in response to changes in ambient light. In particular, phytochromes exert their regulatory activity by switching between a biologically inactive red-light-absorbing form (Pr) and an active far-red-light absorbing form (Pfr). Recently, biochemical and genetic studies have demonstrated the occurrence of phytochrome-like proteins in photosynthetic and non-photosynthetic bacteria--but little is known about their functions. Here we report the discovery of a bacteriophytochrome located downstream from the photosynthesis gene cluster in a Bradyrhizobium strain symbiont of Aeschynomene. The synthesis of the complete photosynthetic apparatus is totally under the control of this bacteriophytochrome. A similar behaviour is observed for the closely related species Rhodopseudomonas palustris, but not for the more distant anoxygenic photosynthetic bacteria of the genus Rhodobacter, Rubrivivax or Rhodospirillum. Unlike other (bacterio)phytochromes, the carboxy-terminal domain of this bacteriophytochrome contains no histidine kinase features. This suggests a light signalling pathway involving direct protein-protein interaction with no phosphorelay cascade. This specific mechanism of regulation may represent an important ecological adaptation to optimize the plant-bacteria interaction.  相似文献   

13.
Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe-S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe-S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe-S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.  相似文献   

14.
A F Slater  A Cerami 《Nature》1992,355(6356):167-169
The incidence of human malaria has increased during the past 20 years; 270 million people are now estimated to be infected with the parasite. An important contribution to this increase has been the appearance of malaria organisms resistant to quinoline-containing antimalarials such as chloroquine and quinine. These drugs accumulate in the acid food vacuoles of the intraerythrocytic-stage malaria parasite, although the mechanism of their specific toxicity in this organelle is uncertain. The primary function of the food vacuole is the proteolysis of ingested red cell haemoglobin to provide the growing parasite with essential amino acids. Haemoglobin breakdown in the food vacuole releases haem, which if soluble can damage biological membranes and inhibit a variety of enzymes. Rather than degrading or excreting the haem, the parasite has evolved a novel pathway for its detoxification by incorporating it into an insoluble crystalline material called haemozoin or malaria pigment. These crystals form in the food vacuole of the parasite concomitant with haemoglobin degradation, where they remain until the infected red cell bursts. The structure of haemozoin comprises a polymer of haems linked between the central ferric ion of one haem and a carboxylate side-group oxygen of another. This structure does not form spontaneously from either free haem or haemoglobin under physiological conditions, and the biochemistry of its formation is unclear. Here we report the identification and characterization of a haem polymerase enzyme activity from extracts of Plasmodium falciparum trophozoites, and show that this enzyme is inhibited by quinoline-containing drugs such as chloroquine and quinine. This provides a possible explanation for the highly stage-specific antimalarial properties of these drugs.  相似文献   

15.
Structure of cytochrome c nitrite reductase.   总被引:1,自引:0,他引:1  
The enzyme cytochrome c nitrite reductase catalyses the six-electron reduction of nitrite to ammonia as one of the key steps in the biological nitrogen cycle, where it participates in the anaerobic energy metabolism of dissimilatory nitrate ammonification. Here we report on the crystal structure of this enzyme from the microorganism Sulfurospirillum deleyianum, which we solved by multiwavelength anomalous dispersion methods. We propose a reaction scheme for the transformation of nitrite based on structural and spectroscopic information. Cytochrome c nitrite reductase is a functional dimer, with 10 close-packed haem groups of type c and an unusual lysine-coordinated high-spin haem at the active site. By comparing the haem arrangement of this nitrite reductase with that of other multihaem cytochromes, we have been able to identify a family of proteins in which the orientation of haem groups is conserved whereas structure and function are not.  相似文献   

16.
17.
Kühl M  Chen M  Ralph PJ  Schreiber U  Larkum AW 《Nature》2005,433(7028):820
The cyanobacterium known as Acaryochloris marina is a unique phototroph that uses chlorophyll d as its principal light-harvesting pigment instead of chlorophyll a, the form commonly found in plants, algae and other cyanobacteria; this means that it depends on far-red light for photosynthesis. Here we demonstrate photosynthetic activity in Acaryochloris-like phototrophs that live underneath minute coral-reef invertebrates (didemnid ascidians) in a shaded niche enriched in near-infrared light. This discovery clarifies how these cyanobacteria are able to thrive as free-living organisms in their natural habitat.  相似文献   

18.
T Kitagawa  K Nagai 《Nature》1979,281(5731):503-504
Spectroscopic studies have provided extensive information on the primary process of visual pigments and photoexcitation of chlorophyll as well as their effects on photoreactivity on the higher-order structures of protein has been observed only rarely. Resonance Raman spectroscopy can reveal the vibrational frequencies of the chromophore in a molecule provided the excitation wavelength is in the absorption band of that molecule. As the visible absorption bands of haemproteins are due to pi pi* transitions of the porphyrin ring, we can selectively observe the vibrational frequencies of iron porphyrin during in situ interactions with immediate amino acid residues of protein when the wavelength of excitation light is close to the Soret or Q band. Correlation of some vibrational frequencies of haem with the oxidation and spin states of the haem iron has been studied in detail and an empirical rules has been established. This method is therefore especially suitable for the study of an effect of higher-order structures of protein on the chromophore. We report here a photoreaction facilitated by a particular quaternary structure of protein--in various haemoglobins resonance Raman spectroscopy showed that reversible photoreduction of haem took place in the T state but not the R state.  相似文献   

19.
The discovery of artemisinin more than 30 years ago provided a completely new antimalarial structural prototype; that is, a molecule with a pharmacophoric peroxide bond in a unique 1,2,4-trioxane heterocycle. Available evidence suggests that artemisinin and related peroxidic antimalarial drugs exert their parasiticidal activity subsequent to reductive activation by haem, released as a result of haemoglobin digestion by the malaria-causing parasite. This irreversible redox reaction produces carbon-centred free radicals, leading to alkylation of haem and proteins (enzymes), one of which--the sarcoplasmic-endoplasmic reticulum ATPase PfATP6 (ref. 7)--may be critical to parasite survival. Notably, there is no evidence of drug resistance to any member of the artemisinin family of drugs. The chemotherapy of malaria has benefited greatly from the semi-synthetic artemisinins artemether and artesunate as they rapidly reduce parasite burden, have good therapeutic indices and provide for successful treatment outcomes. However, as a drug class, the artemisinins suffer from chemical (semi-synthetic availability, purity and cost), biopharmaceutical (poor bioavailability and limiting pharmacokinetics) and treatment (non-compliance with long treatment regimens and recrudescence) issues that limit their therapeutic potential. Here we describe how a synthetic peroxide antimalarial drug development candidate was identified in a collaborative drug discovery project.  相似文献   

20.
Efficient photosynthesis is essential for plant survival. To optimize photosynthesis, plants have developed several photoresponses. Stems bend towards a light source (phototropism), chloroplasts move to a place of appropriate light intensity (chloroplast photorelocation) and stomata open to absorb carbon dioxide. These responses are mediated by the blue-light receptors phototropin 1 (phot1) and phototropin 2 (phot2) in Arabidopsis (refs 1-5). In some ferns, phototropism and chloroplast photorelocation are controlled by red light as well as blue light. However, until now, the photoreceptor mediating these red-light responses has not been identified. The fern Adiantum capillus-veneris has an unconventional photoreceptor, phytochrome 3 (phy3), which is a chimaera of the red/far-red light receptor phytochrome and phototropin. We identify here a function of phy3 for red-light-induced phototropism and for red-light-induced chloroplast photorelocation, by using mutational analysis and complementation. Because phy3 greatly enhances the sensitivity to white light in orienting leaves and chloroplasts, and PHY3 homologues exist among various fern species, this chimaeric photoreceptor may have had a central role in the divergence and proliferation of fern species under low-light canopy conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号