首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
M矩阵是计算数学中应用极其广泛的矩阵类。本文对n阶方阵A是否为M矩阵给出了几个新的判定定理,并得到结果:(2|aii|-iα)(2|ajj|-jβ)jαiβ,这一结果比过去的结果有明显的进步。  相似文献   

2.
次对角占优矩阵在计算数学和控制理论中有着相当广泛的应用.本文介绍了广义次对角占优矩阵并运用类比法给出了判定广义次对角占优矩阵和次M-矩阵的新方法.A=(aij)∈Cn×n,N={1,2,…,n},J′(A)={n-I 1| |an-I 1,I|>Σj≠1|an-I 1,j|=Λn-I 1,I∈N}≠φ,M′(A)为A的次比较矩阵,若存在N1∪N2=N,N1∩N2=φ,有(|an-I 1,I|-α′I)(|an-j 1,j|-β′j)>α′jβ′I((A)I∈N1,j∈N2),α′I=Σj∈N1j≠1|an-I 1,j|,β′I=Σj∈N2j≠1|an-I 1,j|,则A为广义次对角占优矩阵,M′(A)为次M-矩阵.  相似文献   

3.
关于M矩阵Hadamard不等式的进一步改进   总被引:1,自引:0,他引:1  
本文研究M矩阵及其逆矩阵的行列式性质,得到的主要结果是:设A是n阶非奇异M矩阵,若α={i1,i2,…,ik}∈Qk,n,(n〉-α={j1,j2,…,jn-k}(1≤j1<j2<…<jn-k≤n)则有detA≤det(A[a])det(A(a))n-k∏t=1(1-k∑s=1 αjtisαisjt/αisisαjtjt).由此推广了关于Hadamard-Fischer不等式的几个近期结论.  相似文献   

4.
广义严格对角占优矩阵与非奇异M—矩阵的判定   总被引:9,自引:2,他引:7  
设A=(aij)∈Cn×n是复矩阵,若任意i∈N={1,2,…,n}都有|aii|>∑j≠i|aij|,则称A是严格对角占优矩阵.若存在正对角阵D使是AD严格对角占优矩阵,则称为广义严格对角占优矩阵.本文利用矩阵回路给出了广义严格对角占优矩阵与非奇异M矩阵的若干充分条件.改进和推广了已有的相应结果.  相似文献   

5.
研究了满足ααi-1,j-1 βαi-1,j=αi,j的序列{αi,j}.用发生函数法得到了n 1阶矩阵A=(αi,j)(n 1)-(n 1)的精确表达式.用数学归纳法证明(1-βx-axy)中一般项xiyi(i≥j)的系数为αjβi-j i n-1 n-1 ij.导出了一些有关二项式系数(nk)的新的组合恒等式.  相似文献   

6.
研究了满足ααi-1,j-1+βαi-1,j=αi,j的序列{αi,j}.用发生函数法得到了n+1阶矩阵A=(αi,j)(n+1)×(n +1)的精确表达式.用数学归纳法证明(1-βx-αxy)-n中一般项xiyj(i≥j)的系数为αjβi-j(i+n-1/n-1)(i j).导出了一些有关二项式系数(n k)的新的组合恒等式.  相似文献   

7.
研究了满足ααi-1,j-1+βαi-1,j=αi,j的序列{αi,j}.用发生函数法得到了n+1阶矩阵A=(αi,j)(n+1)×(n +1)的精确表达式.用数学归纳法证明(1-βx-αxy)-n中一般项xiyj(i≥j)的系数为αjβi-j(i+n-1/n-1)(i j).导出了一些有关二项式系数(n k)的新的组合恒等式.  相似文献   

8.
设P是一个域,Γn是满足{αEij|i,j=1,2,…,n,α∈P} (P)的一个乘法半群,其中Mn(P)定义P上所有n×n矩阵组成的乘法半群.证明了一个结果:若f:Γn→Mn(P)是一个保零矩阵的乘法映射,Fij(i,j=1,2,…,n)是Mn(P)中n2个矩阵,且满足FijFkl=δjkFil(i,j,k,l=1,2,…,n),则存在可逆阵S∈Mn(P),使得f(Fij)=S-1FijS,i,j=1,2,…,n.由此刻画了Γn的保迹反乘法映射.  相似文献   

9.
设A=(aij)∈Cn×n,若存在α∈(0,1),使i≠j(i,j∈N={1,2,…,n}),有aii.ajj>[αΛi(A)+(1-α)Si(A)].[αΛj(A)+(1-α)Sj(A)],则称A为严格α-双对角占优矩阵。首先推广严格α-双对角占优矩阵的概念到广义α-双对角占优矩阵;然后得到了判别广义α-双对角占优矩阵的一个充分必要条件,进而可以判断非奇异H-矩阵,改进和推广了已有的结论,进一步丰富和完善了α-双对角占优矩阵的理论。  相似文献   

10.
α-双对角占优与H矩阵的判定   总被引:10,自引:0,他引:10  
设A=(aij)∈Cn×n,若 α∈[0,1],使对 i≠j(i,j∈N)均有|aiiajj|≥(Λi,Λj)α(SiSj)1-α,则称A为α 双对角占优矩阵.本文利用矩阵回路给出了A为H阵的新的判定准则,即A=(aij)∈Cn×n,若对任意i∈N和v∈S(A)有:ΠΛi)α(ΠSi)1-α,α∈[0,1],则A为H阵,改进和推广了已有的结果.|aii|>(Πi∈νi∈νi∈ν  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号