共查询到20条相似文献,搜索用时 0 毫秒
1.
设K1和K2均为体,m和n为两个正整数,GLm(K1)和GLn(K2)分别表示K1上m阶一般线性群和K2上n阶一般线性群,映射f:GLm(K1)→GLn(K2)称为从GLm(K1)到GLn(K2)的群同态,如果f(AB)=f(A)f(B),A,B∈GLm(K1)。刻画了m>n时从GLm(K1)到GLn(K2)的所有群同态。 相似文献
2.
交换环上线性群的平延换位子 总被引:5,自引:1,他引:4
王路群 《黑龙江大学自然科学学报》2001,18(3):1-4
GLn(R)表示一个含1交换环R上的n级一般线性群,n≥2,T12(1)表示(1,2)位置元与所有对角元都是l而其余元为零的GLn(R)中元,GLn(R)中与T12(1)相似的矩阵称为R上n级平延,在剩余数≥2的限制下,证明下述事实设A∈GLn(R),则A是平延换位子当且仅当A相似于 相似文献
3.
设F是域,n是正整数,GLn(F)表示域F上的n阶一般线性群.对于两个正整数m和n,若映射f:GLn(F)→GLm(F)满足f(AB)=f(A)f(B), A,B∈GLn(F),则称f是从GLn(F)到GLm(F)的群同态.当n>m≥1,所有从GLn(F)到GLm(F)的群同态的结构被刻画. 相似文献
4.
5.
6.
7.
8.
设K为除环,Kmxn是K上所有mxn矩阵的集合.设A∈Kmxn,满足rank(As+1)=rank(As)的最小非负整数s称为A的指标,记作Ind(A)=s.设A∈Kmxn,Ind(A)=s,如果X∈Knxn满足以下方程:(1)AXA=X(2)AX=XA(3)As+1X=As,则称为X为A的Drazin逆,记作X=AD... 相似文献
9.
10.
11.
保矩阵群逆的线性算子 总被引:6,自引:2,他引:6
近年来一些作者对线性保持问题给予了极大的关注,但研究在环上保群逆的文章尚很少,文献[5]给出了2是单位的环上矩阵保群逆的线性算子的刻划。补充了[5]的结果,令R是特征2的主理想整环,M_0(R)记R上n×n矩阵代数,刻划了在R上保M_n(R)中矩阵的群逆的线性算子的形式。 相似文献
12.
生玉秋 《黑龙江大学自然科学学报》2012,(5):578-581,585
设F,K为体,ChF和ChK分别表示F和K的特征,n为正整数,SLn(F)和SLn(K)分别表示F和K上的n级特殊线性群,PSLn(F)和PSLn(K)分别表示F和K上的n级射影特殊线性群。郝立柱确定了ChF=2时SLn(F)到SLn(K)(n≥3)的同态形式,得到了此时的同态是平凡的结论。在以上基础上继续研究,使用矩阵计算等方法和技巧,确定了当F,K为域且ChK=2时PSLn(F)到PSLn(K)(n≥3)的同态形式,得到了特征为2的域上同级射影特殊线性群的同态是平凡的结论。 相似文献
13.
14.
15.
郑千里 《黑龙江大学自然科学学报》2000,17(2):18-20
以Sn(K)表示体k上的n维特殊线性群,n≥2.在除n=2且k≤3的情形下,证明了SLn(K)可由平延(做成的)换位子生成.进而,在SL2(K)中,当|K|>3时,证明了与(0 1 -1 X)相似的矩阵至多是两个延换位子之积的结论. 相似文献
16.
肖爱国 《湘潭大学自然科学学报》1992,(2)
将R.Scherer和H.Turke 1989年得到的关于Runge-Kutta方法A-稳定代数特征的结果推广,给出了一般线性方法A-稳定的弱代数条件,为构造A-稳定的一般线性方法提供了新的代数途径。 相似文献
17.
18.
19.
对于半定自共轭四元数矩阵的Lowner偏序,本文证得了A≤B的四种刻划,并将文「5」中的三个结果推广天实四元数除环上。 相似文献
20.
设F,K为体,ChF表示F的特征;n∈Z ,GLn(F),SLn(F)分别表示F上的n阶一般线性群和n阶特殊线性群.PGLn(F),PSLn(F)分别表示F上的n阶射影一般线性群和n阶射影特殊线性群.文献[2]确定了域上PSLn(F)到PSLm(F)(n>m)的同态形式,得到了此时的同态是平凡的结论.在此基础上继续研究,使用与[2-3]类似的方法,得到了结论:当n>m、n≥3且ChK=2时PSLn(F)到PSLm(K)的同态是平凡的. 相似文献