首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Aging treatment is an effective way to optimize the mechanical properties of Co-based superalloys. In this study, commercial GH 605 superalloy was subjected to aging treatment at 650 ?°C in a wide time range up to 1000 ?h. The effects of aging time on the tensile characteristics, microstructure evolution and mechanical properties were systematically investigated at room temperature (RT) and 900 ?°C. The results showed that the volume fractions of M6C and M23C6 carbide increased with the aging time. After long-term aging treatment, the yield strength (YS) at RT was enhanced from 490.3 ?MPa to 805.9 ?MPa, while the alloy still had high tensile ductility (above 20%). Microscopic observations by transmission electron microscopy (TEM) indicated that the strengthening mechanism was related to carbide precipitation inside the grains and the change in the dislocation slipping mode. Moreover, long-term aging treatment can increase the elongation from 24.1% to 47.3% at 900 ?°C accompanied by a slight increase of YS from 299.3 ?MPa to 313.9 ?MPa. Based on detailed microstructure analysis the strengthening mechanism can be attributed to the refined grains as well as carbide precipitation inside the grains and around the grain boundaries.  相似文献   

2.
This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic (RAFM) steels. High-angle grain boundaries, subgrain boundaries, nano-sized M23C6, and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength. M23C6 carbides are easily coarsened under high temperatures, thereby weakening their ability to block dislocations. Creep properties are improved through the reduction of M23C6 carbides. Thus, the loss of strength must be compensated by other strengthening mechanisms. This review also outlines the recent progress in the development of RAFM steels. Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength. Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel. The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries. This procedure increases the creep life of TMT(thermo-mechanical treatment) 9Cr–1W–0.06Ta steel by ~20 times compared with those of F82H and Eurofer 97 steels under 550°C/260 MPa.  相似文献   

3.
利用光学显微镜、透射电镜和能谱分析等方法对两种不同Ti含量的铁素体基Ti--Mo微合金钢中析出相的尺寸、分布特征、析出规律和成分进行了研究.结果表明:钢中绝大多数析出相为超细碳化物,尺寸小于10 nm,析出相尺寸呈正态分布.随着Ti质量分数由0.072%增到0.092%,析出粒子平均尺寸增大,分布峰值向粒子尺寸增大的方向移动.Ti--Mo微合金钢具有栅格状的相间析出方式,栅格间距受冷速的影响较大,晶内和靠近晶界处的栅格间距不同.能谱分析发现,不同尺寸的粒子Mo含量不同,较大颗粒(50 nm左右)析出相中不含Mo,小颗粒(20 nm)中碳化物是Ti和Mo的复合析出相,且随着粒子尺寸的减小,成分中Mo所占比重增大.  相似文献   

4.
The precipitation behaviors of MnS particles at 900℃ in a hot deformed Fe-3%Si alloy were observed statistically. The ratio of MnS particles on dislocations and in grain boundaries was calculated based on a model concerning the second phase precipitation in supersaturated solid solution. It was indicated that the precipitation of MnS particles on dislocations prevailed. The coarsening process of MnS particles in grain boundaries determined the boundary mobility during the secondary recrystallization. However, the density difference of precipitated MnS particles inside the grains on both sides of a boundary will determine the migration direction of the boundary as well, besides the grain size effect. It was observed that the densities of MnS particles in two neighboring grains were commonly different, and the boundary tended to move towards the area with lower particle density. The factors, e.g. dislocation densities in differently oriented grains will affect the density of precipitated particles, in which the Goss grains with higher particle density could grow more easily.  相似文献   

5.
As-cast HK40 steel was aged at 700, 800, or 900℃ for times as long as 2000 h. Microstructural characterization showed that the primary M7C3 carbide network contained a substantial content of manganese, in agreement with the microsegregation of manganese calculated by Thermo-Calc using the Scheil-Gulliver module. The dissolution of primary carbides caused the solute supersaturation of austenite and subsequent precipitation of fine M23C6 carbides in the austenite matrix for aged specimens. During prolonged aging, the carbide size increased with increasing time because of the coarsening process. A time-temperature-precipitation diagram for M23C6 carbides was calculated using the Thermo-Calc PRISMA software; this diagram showed good agreement with the experimental growth kinetics of precipitation. The fine carbide precipitation caused an increase in hardness; however, the coarsening process of carbides promoted a decrease in hardness. Nanoindentation tests of the austenite matrix indicated an increase in ductility with increasing aging time.  相似文献   

6.
时效处理对2205 DSS组织及力学性能的影响   总被引:1,自引:0,他引:1  
首先对2205 DSS进行了1 100℃固溶处理,随后将试样分别在650,700,750,800,850和900℃下进行不同时间的时效处理,探究2205 DSS中σ相的析出规律及其对材料组织和力学性能的影响.研究结果表明:2205 DSS中σ相的析出分为有碳化物伴随和无碳化物伴随两种方式,前者发生在α-γ相界上,后者则主要发生在α相的晶内和晶界;2205 DSS在850℃时效时σ相的析出行为最严重;在析出σ相后,合金元素Cr和Mo在各相中会发生不同程度的偏聚;2205 DSS中析出少量的σ相对材料的塑性影响不大,但会显著降低材料的冲击韧性,而σ相的大量析出则会使两者均发生严重恶化;σ相的析出对材料的屈服强度影响不大,对材料的抗拉强度有略微的提高作用.  相似文献   

7.
镍基粉末高温合金FGH95的组织和性能   总被引:6,自引:0,他引:6  
论文讨论了FGH95氩气雾化粉末颗粒的凝固组织,合金相组成,表面化学成分;粉末经过热等静压后的显微组织与相组成,原颗粒边界碳化物的本质和形成机制,热等静压坯再经热挤压后合金组织的改善,以及用改进的最终热处理使合金获得良好的显微组织,以提高合金的高温的拉伸,持久断裂,低周疲劳性能。  相似文献   

8.
The morphological evolution and precipitation kinetics of γ′ and D0_(19)(Co_3 W) phase in Co–Al–W alloys at 900 °C have been studied by applying Phase-field method and experiment in order to understand the transformation process of γ′ phase and D0_(19) phase. The growth processes of D0_(19) phase and precipitation of γ′ phase under elastic fields were simulated through coupling with thermodynamics and dynamics databases. The simulation results indicate that the misfit δ≥ 0.53% has a greater impact on γ′ particle morphology in γ/γ′ structure.Co–Al–W alloy with low Al and high W is one of the factors to promote the precipitation of D0_(19) phase. Three stages during aging, namely the γ′ phase incubation stage, the γ′ phase fast nucleation and growth stage, and the transformation from γ′ phase to D0_(19) phase stage can be observed with the non-constant coarsening rate that varying with the decrease of γ′ phase. The particle size distribution(PSD) during the precipitation of D0_(19) phase is more in line with MLSW theory than LSW theory. This simulation results are in good agreement with the experiment results to help analyze microstructure evolution of Co–Al–W alloy.  相似文献   

9.
长期高温时效12Cr1MoV钢中碳化物组织结构   总被引:5,自引:0,他引:5  
12Cr1MdV低合金耐热钢在540℃运行20万h后,材料中碳化物的组织结构发生显著变化.研究结果表明:材料中大量的碳化物沿晶界析出并聚集粗化,析出的碳化物主要为M23C6,同时存在少量的M6C,碳化物的沿晶界析出及其粗化是材料结构和性能发生恶化的主要原因;弥散的细小的富Ⅴ碳化物MC(V4C3)在铁素体晶体内沉淀析出,有助于12cr1MoV低合金耐热钢的性能和组织结构的稳定;珠光体组织中Fe3C发生球化和分解,但无明显聚集长大,并由原先的M3C型分解转变为MC型.  相似文献   

10.
Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facilitates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the formation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener’s equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro-structural evolution and hardness variation, the process of tempering can be separated into three steps.  相似文献   

11.
Ti_(45)Cu_(40)Ni_7Zr_5Sn_(2.5)Si_(0.5) alloys were prepared under various cooling rate conditions during solidification.The alloys exhibited different volume fractions of B2 particles with 0~40 vol%in an amorphous matrix.Monolithic bulk metallic glass of 1 mm diameter showed no macroscopic plasticity and exhibited the typical vein patterns in a maximum shear stress plane on the fracture surface.However,a bulk metallic glass composite containing the B2 particles revealed obvious plasticity(~5.6%)with a remarkable work-hardening behavior that resulted from a stress-induced martensitic transformation of the B2 particles.Moreover,the composite displayed the complicated fracture morphologies containing of three types of fracture features.Through detailed investigations on the microstructural evolution,mechanical,deformation and fracture characteristics,the influence of B2 particle on overall behavior of the TiCu-based bulk metallic glass composites was elucidated.  相似文献   

12.
The effect of anionic phosphatidylglycerol (PG) on oxygen evolution in a photosystem II (PS II ) particle depleted of Ca2+ (designated dCaPSII ) has been investigated. The major finding is the observation of a new role of PG in the PSII function. That is, PG restores nearly the lost oxygen evolution in dcaPS II particle owing to Ca2+ depletion to the levels in intact PS II. Furthermore, there is a stimulation of oxygen-evolving activity in the dCaPSII complexed with PG in the presence of exogenous CaCl2, which PG enhances increasingly oxygen evolution with increasing CaCl2 concentration. It is suggested that PG-induced oxygen evolution recovery of dCa PS II particle results from resumption of normal structure in protein by PG effect, whereas the enhancement of oxygen evolution in complex subject to CaCl2 is ascribed to the optimization of such a structure due to coordination complex formation of Ca2+ ions with PG.  相似文献   

13.
A quenching and partitioning (Q&P) process was applied to vanadium carbide particle (VCp)-reinforced Fe-matrix composites (VC-Fe-MCs) to obtain a multiphase microstructure comprising VC, V8C7, M3C, α-Fe, and γ-Fe. The effects of the austenitizing temperature and the quenching temperature on the microstructure, mechanical properties, and wear resistance of the VC-Fe-MCs were studied. The results show that the size of the carbide became coarse and that the shape of some particles began to transform from diffused graininess into a chrysanthemum-shaped structure with increasing austenitizing temperature. The microhardness decreased with increasing austenitizing temperature but substantially increased after wear testing compared with the microhardness before wear testing; the microhardness values improved by 20.0% ±2.5%. Retained austenite enhanced the impact toughness and promoted the transformation-induced plasticity (TRIP) effect to improve wear resistance under certain load conditions.  相似文献   

14.
Monodispersed copper oxalate particles with flaky morphology were prepared via a simple one-pot synthesis method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and fourier transform infrared (FTIR) spectra were used to characterize particle morphology, size, phase composition, and functional groups. It was found that the presence of ethylenediaminetetraacetic acid (EDTA) and the solution pH value had strong influence on the morphological and size evolution of the precipitated particles. On the basis of controlled release of copper ions from a Cu2+–EDTA complex and Weimarn’s law, a strategy for the controlled synthesis of monodispersed copper oxalate particles was designed by referring to the basic mode of the Stöber method. The inherent nature of crystallization to form the flaky solid in the early stage of precipitation as well as the driving force of the long-lasting low supersaturation in the growth stage was proposed to explain the size and morphological evolution of the copper oxalate precipitates. Thermodynamic equilibrium concentrations of copper(Ⅱ) species in the Cu(Ⅱ)–EDTA–oxalate–H2O solution system were calculated to help explain the possible formation mechanism of copper oxalate precipitates.  相似文献   

15.
The wear of cutting tools in the machining of 2024Al alloy composites reinforced with Al2O3 particles using varying sizes and volume fractions of particles up to 23.3vol% was investigated by a turning process using coated carbide tools K10 and TP30 at different cutting speeds. Machining tests were performed with a plan of experiments based on the Taguchi method. The tool life model was developed in terms of cutting speed, size, and volume fraction of particles by multiple linear regressions. The analysis of variance (ANOVA) was also employed to carry out the effects of these parameters on the cutting tool life. The test results show that the tool life decreases with the increase of cutting speed for both cutting tools K10 and TP30, and the tool life of the K10 tool is significantly longer than that of the TP30 tool. For the tool life, cutting speed is found to be the most effective factor followed by particle content and particle size, respectively. The predicted tool life of cutting tools is found to be in very good agreement with the experimentally observed ones.  相似文献   

16.
A tungsten inert gas welded joint between a novel heat-resistant austenitic steel and ERNiCrCoMo-1 weld metal was investigated before and after creep in this study. The evolution of the microstructures in the base and weld metals was discussed based on the electron back-scatter diffraction(EBSD) and transmission electron microscopy(TEM) analyses. The preferred orientations of the fusion boundary after creep revealed the influence of the applied stress on creep deformation mechanism. A cooperative nucleation process of M_(23)C_6 carbides in the base metal was proposed. The finely distributed Cu-rich phase was cut off by the dislocations during creep, leading to increased mean size and reduced amount of the nano-Cu phase. A modified triple-precipitate hardening model was constructed based on TEM observations of the interactions between the particles and the dislocations in the base metal after creep at 200 MPa. The evolution of a μ phase in the weld metal involved epitaxial growth and dissolving into the matrix.  相似文献   

17.
Some ternary carbide and nitride ceramics have been demonstrated to exhibit abnormal thermal shock behavior in mechanical properties. However, the influence of thermal shock on other properties is not clear. This work reports on the influence of thermal shock on electrical conductivity of Ti_2SnC as a representative member of ternary carbides. Abnormal change in electrical conductivity was first demonstrated during quenching Ti_2 SnC in water at 500-800 ℃. The residual electrical conductivity of the quenched Ti_2SnC gradually decreased with increasing temperature, but abnormally increased after quenching at 600 ℃. The microstructure of surface cracks was characterized. The main mechanism for the abnormal electrical conductivity recovery is that some narrow branching cracks are filled by metallic Sn precipitating from Ti_2SnC.  相似文献   

18.
The influence of the microstructure on mechanical properties and corrosion behavior of the Mg–1.21Li–1.12Ca–1Y alloy was investigated using OM, SEM, XRD, EPMA, EDS, tensile tests and corrosion measurements. The results demonstrated that the microstructure of the Mg–1.21Li–1.12Ca–1Y alloy was characterized by α-Mg substrate and intermetallic compounds Mg2 Ca and Mg24Y5. Most of the fine Mg2 Ca particles for the as-cast alloy were distributed along the grain boundaries, while for the as-extruded along the extrusion direction. The Mg24Y5 particles with a larger size than the Mg2 Ca particles were positioned inside the grains. The mechanical properties of Mg–1.21Li–1.12Ca–1Y alloy were improved by the grain refinement and dispersion strengthening. Corrosion pits initiated at the α-Mg matrix neighboring the Mg2 Ca particles and subsequently the alloy exhibited general corrosion and filiform corrosion as the corrosion product layer of Mg(OH)2and Mg CO3 became compact and thick.  相似文献   

19.
It is found that the distribution of covalent electron pair number and covalent bond energy was nonuniform in carbides Fe 3C, (Fe,Cr) 3C and (Fe,Mn) 3C, in which the energy difference between the strongest and the weakest bonds is very great. A criterion of covalent bond breaking during the heat treatment of M 3C pattern carbide is presented as follows. If the heat energy \%E\-\%w from heat treatment is higher than the diffusion activation energy \%Q\% of carbon atom in γ_Fe, the less the covalent bond energy \%E\% α is, the earlier the covalent bond α will be broken. According to the criterion, why the breaking of (Fe,Mn) 3C network was easier than that of Fe 3C network and why the breaking of (Fe, Cr) 3C network was more difficult than that of Fe 3C network are explained. It is indicated that Mn promoted the carbide to be spheroidized and Cr hindered the carbide from spheroidization during the heat treatment of carbides spheroidization.  相似文献   

20.
利用基于第一性原理的VASP软件计算钢中合金碳化物(Fe,Mo)_3C在0 K、0 Pa的磁矩和形成能,利用热力学平衡软件MTDATA计算合金碳化物(Fe,Mo)_3C的化学自由能改变量,利用Weiss分子场理论计算合金碳化物在12 T强磁场下的磁自由能改变量。结果表明,合金碳化物(Fe,Mo)_3C的磁矩主要来源于不同Wyckoff位置的Fe原子,8d位置的Fe原子对磁矩的影响比4c位置的Fe原子更大,而Mo原子会使合金碳化物的磁矩降低;合金碳化物Fe_2MoC、Mo_3C的形成能为负,表明这两种合金碳化物比Fe_3C和FeMo_2C更稳定;另外,Mo原子会降低合金碳化物(Fe,Mo)_3C化学自由能改变量,增大其磁自由能改变量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号