首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
系统研究了喷射成形高锌Al-Zn-Mg-Cu合金在不同时效处理条件下的显微组织与力学性能.结果表明:自然时效合金在晶界处已析出强化相;单级时效合金随时效时间的延长,晶内和晶界析出相逐渐粗化;双级时效合金的析出相进一步粗化,并且晶界析出相为断续特征;回归再时效合金具有较细的晶内组织及类似于双级时效的晶界组织.同时发现,双级时效合金的抗拉强度比峰时效合金的强度下降了13%左右,而回归再时效合金的强度优于峰时效合金的强度.  相似文献   

2.
双级时效对7A52铝合金组织与性能的影响   总被引:3,自引:0,他引:3  
采用拉伸力学性能测试、电导率测定、透射电镜分析等手段研究双级时效处理条件下7A52铝合金的力学性能、电导率和显微组织结构。研究结果表明:7A52铝合金适宜的双级时效工艺为105℃/8 h 130℃/14 h。在此条件下,合金的抗拉强度、屈服强度、伸长率和电导率分别为500 MPa,444 MPa,11.1%和18.44 S/m。与单级峰值时效相比,强度并未明显降低而电导率有明显提高,表明合金抗应力腐蚀性能得到改善。双级时效后,合金的晶内组织为细小弥散分布的η′(MgZn2)相,晶界上有断续分布的晶界析出相MgZn2和较明显的无沉淀析出带。  相似文献   

3.
通过慢应变速率拉伸实验(SSR_T)、晶间腐蚀试验、剥落腐蚀实验、室温力学性能测试、电导率测试、维氏硬度测量和透射电子显微分析等手段对2.5 mm厚Al-5.4Zn-2.0Mg-0.25Sc-0.1Zr合金板材在双级时效下的抗应力腐蚀性能(SCC)、抗晶间腐蚀性能(IGC)、抗剥落腐蚀性能(EC)、力学性能、电学性能、显微组织结构及其演变规律进行研究。研究结果表明:合金较适宜的双级时效工艺为120℃/6 h+140℃/20 h,在此工艺条件下合金的抗拉强度R_m、屈服强度R_p、伸长率A和电导率γ分别为553 MPa,534 MPa,12.0%和22.3 MS/m,双级时效后合金晶内为弥散分布的亚稳定强化相η′-MgZn_2,晶界出现粗大不连续分布的平衡相η-MgZn_2,还伴有明显宽化的无沉淀析出带。与单级峰值时效(120℃/24 h)相比,合金晶间腐蚀倾向减小,具有良好的抗剥落腐蚀性能,剥蚀等级为中等剥落腐蚀(EB)级,具有良好的抗应力腐蚀性能。  相似文献   

4.
研究了回归及回归再时效处理对7B04铝合金预拉伸厚板的显微组织、力学性能及电导率的影响. 通过透射电子显微镜(TEM)观察了回归再时效合金的微观组织,并对合金进行了力学性能及电导率测试. 结果表明:采用合适的回归再时效工艺(180℃/1h,水淬+120℃/22h)可使材料具有接近T6态合金强度的同时,电导率大幅度提升,达21.0MS·m-1;此时,合金晶内组织与T6状态相似,析出相细小呈弥散分布,而晶界组织与双级T74时效组织特征相似,晶界析出相粗大呈不连续分布,晶界两侧伴之以明显的晶界无析出带.  相似文献   

5.
时效制度对7475铝合金挤压件组织与性能的影响   总被引:3,自引:1,他引:2  
通过对不同时效制度下的常温拉伸性能、硬度、电导率、抗应力腐蚀性能等的测试及微观组织的观察,分析了不同时效制度对7475铝合金挤压型材的微观组织与综合性能的影响.研究结果表明,单级峰值时效(T6)具有很高的强度,但抗应力腐蚀性能较差;双级时效(T76,T73)由于晶界析出物呈粗大和孤立分布,具有较强的抗应力腐蚀性能,但由于过时效时晶内析出相尺寸增大,强度有较大幅度的下降;沿变形方向带状分布的粗大难熔硬相质点对合金塑性有较大影响,是断裂过程中裂纹的主要发源地.  相似文献   

6.
结合残余应力测量、原位电阻率表征、硬度测试和透射电子显微镜观察等探究了一种新型包覆淬火工艺及后续时效处理对Al-Zn-Mg-Cu合金板材微观组织和力学性能的影响.结果表明:包覆淬火工艺可以有效降低Al-Zn-Mg-Cu合金的淬火残余应力及位错密度,原位电阻率结果显示包覆层厚度越厚(0.2~0.6 mm),包覆淬火处理合金的时效析出行为与普通淬火合金越接近;通过原位电阻率和硬度测试获得了包覆淬火合金优化的峰值时效制度,在此时效处理条件下,包覆处理合金能够保持与普通水淬样品近似的析出显微组织及力学性能.  相似文献   

7.
双级过时效是优化工业化大尺寸7050铝合金锻件综合性能的有效手段。对7050铝合金锻件进行双级过时效处理,研究第二级时效时间对其组织与力学性能的影响。结果表明,随着第二级时效时间的延长,晶界处析出相逐渐粗化,并由连续分布转变为断续分布,合金的硬度、屈服强度和抗拉强度随之降低,伸长率与断裂韧性逐渐升高,并且拉伸及断裂韧性测试样品的断裂模式从沿晶断裂向韧窝型断裂转变。当第二级时效时间延长至一定程度时,合金力学性能趋于平稳。为通过双级过时效工艺调控7050铝合金锻件的综合力学性能提供了研究基础和理论指导。  相似文献   

8.
喷射成形超高强度Al-Zn-Mg-Cu合金的固溶处理   总被引:6,自引:2,他引:6  
研究了单级固溶和双级固溶热处理工艺对喷射成形Al-Zn-Mg-Cu铝合金力学性能的影响.应用光学显微镜、扫描电镜与透射电镜对显微组织和第二相颗粒的固溶及沉淀析出状况做了进一步的研究.结果表明:双级固溶时效和单级固溶时效处理制度相比,前者得到的组织和力学性能较为理想;双级固溶处理综合了低温单级固溶和高温单级固溶的优点,即再结晶晶粒尺寸较小,同时回溶颗粒较多.时效后的组织也较理想.采用双级固溶处理(450℃/3h 480℃/3h)和T6时效处理后,合金的抗拉强度和屈服强度分别达到806MPa和797MPa,延伸率达到7.5%.  相似文献   

9.
回归处理工艺对7050铝合金力学和晶间腐蚀性能的影响   总被引:1,自引:0,他引:1  
采用硬度、电导率测试、金相及透射电镜观察等手段,研究回归处理工艺对7050铝合金力学和晶间腐蚀性能的影响.研究结果表明:T6态合金硬度和强度很高,但抗晶间腐蚀能力较弱;与T6态相比,合金经较低温度长时间回归并再时效后,强度和抗晶间腐蚀性能都得到改善;合金经120 ℃/20 h预时效 190 ℃/60 min回归 120 ℃/24 h再时效处理后,其抗拉强度、屈服强度、伸长率和晶间腐蚀最大深度分别为593 MPa,571 MPa,10.5%和0.05 mm,具有最佳的综合性能;经190 ℃/60 min回归和再时效处理后,合金晶内组织与T6态的组织相似,晶界析出相粗大且不连续分布,因此,合金强度最高,抗晶间腐蚀能力最强.  相似文献   

10.
本文通过硬度测量、拉伸实验以及透射电镜观察研究了添加0.5%Ag对一种Al-Li-Cu-Mg-Zr合金时效硬化的影响。结果表明,添加Ag对δ′相的析出无明显影响,但促进了T相的析出。在单级时效或双级时效时,Ag明显增加实验合金的时效硬化效果,时效前的预变形减少了Ag对时效硬化的影响。含Ag合金经低温预时效后再在较高温度时效的初期阶段,出现性能下降的回归现象。  相似文献   

11.
将少量稀土元素添加到Al-Zn-Mg合金中进行时效-回 归-再时效处理.利用扫描电子显微镜和X射线衍射对该合金的显微结构和沉淀相进行了观察和研究. 结果表明, 经过时效-回归-再时效处理后, 稀土Al-Zn-Mg合金的晶粒尺寸减小, 沉淀相MgZn2增加, 同时, 峰时效硬度和氢脆阻力增强.  相似文献   

12.
对7050超高强铝合金进行蠕变时效处理,采用维氏硬度、晶间腐蚀和剥落腐蚀等试验对其力学性能与腐蚀行为进行研究,采用光学显微镜和透射电子显微镜对微观组织进行观察,研究蠕变时效对合金微观组织与性能的影响。结果表明:合金的稳态蠕变速率随温度的升高和应力的增大而逐渐升高,时效温度是影响合金蠕变速率和抗腐蚀性能的主要因素。7050超高强铝合金的稳态蠕变速率与蠕变应力和蠕变温度的关系可以表示为:$ \dot \varepsilon = {e^{12.226}}{\sigma ^{1.66}}{\rm{exp}}( - 120\;536/RT) $。蠕变时效处理后,合金的维氏硬度、抗晶间腐蚀和抗剥落腐蚀性能均得到提高。合金在120 ℃和140 ℃下蠕变时效后,维氏硬度和抗腐蚀性能都保持在较高的水平,160 ℃下合金的维氏硬度和抗腐蚀性能均较低。人工时效后,7050超高强铝合金中的主要强化相为大量弥散分布的η′相,蠕变时效后,晶内和晶界析出相尺寸略有减小,晶界析出相分布不连续,电化学腐蚀速率减小,合金抗腐蚀性能提高。  相似文献   

13.
采用显微硬度测试与透射电镜分析,研究淬火介质对2519铝合金抗剥落腐蚀性能的影响.结果表明:采用空气、沸水和室温水(20 ℃)淬火后,各合金在时效过程中都表现出3个阶段时效特性:欠时效、峰值时效及过时效.合金经空气淬火并峰值时效后,晶界析出相呈不连续分布,且无沉淀析出带的平均宽度为100 nm;合金经室温水淬并峰值时效后,晶界析出相呈链状连续分布,无沉淀析出带平均宽度为60 nm;经室温水(20 ℃)淬火并峰值时效后合金抗剥落腐蚀性能最好,经100 ℃水淬火并峰值时效后的合金次之,经空气淬火并峰值时效后的合金抗剥落腐蚀性能最差.  相似文献   

14.
为提高7A05铝合金热轧板材的综合力学性能并减少各向异性,对7A05铝合金固溶、预时效、时效和形变处理等工艺对性能的影响进行了系统的研究. 比较了供货态、形变态、回归(RRA)态和采用预时效形变热处理的优化态热处理工艺对综合力学性能的影响. 结果表明:固溶的最佳温度为480 ℃,单级时效最佳工艺为120 ℃,24 h,双级时效中第一级时效最佳工艺为90 ℃,8 h,最佳形变为25%. 通过金相组织和力学性能测试结果表明:由于预时效析出促进形变热处理时亚晶等轴化,优化态强度高,进一步改善了合金性能,减少了轧制板材纵横向力学性能各向异性倾向.  相似文献   

15.
采用不同时效状态和随后形变热处理工艺制备了Cu-Cr-Zr系合金,采用微观组织观察、硬度和导电率测试等手段研究了不同时效状态对双级时效Cu-Cr-Zr系合金性能的影响.结果表明:欠时效+冷轧+时效工艺和峰时效+冷轧+时效工艺制备的Cu-Cr-Zr-Mg-Si和Cu-Cr-Zr-Ni-Si合金均可获得力学性能和电学性能的优良组合.其中:欠时效+冷轧+时效工艺所制备的合金综合性能更优,但加工热处理过程中性能变化剧烈,材料生产过程中性能均匀性不易控制;峰时效+冷轧+时效工艺制备的合金综合性能极其稳定,易于在生产中控制.不同工艺下的合金性能差异是由析出相与位错的交互作用机制不同造成的.  相似文献   

16.
Cu-3.2Ni-0.75Si合金的时效析出强化效应分析   总被引:4,自引:0,他引:4  
研究Cu-3.2Ni-0.75Si合金在不同温度时效时的组织转变规律,测量在300-650℃时效不同时间后合金的强度和导电性能;采用透射电镜观察时效合金的显微组织,分析合金时效组织的强化机制。研究结果表明:随着时效时间的延长,合金的导电性能下降,其屈服强度和抗拉强度均快速增加至峰值后缓慢下降;合金在450℃时效处理时,时效2h以前的组织以调幅分解和有序化强化为主,时效4h以后的组织以Ni2Si相强化为主,在2~4h内时效组织强度由调幅分解、有序化和Ni2Si相的复合强化效应决定,合金具有明显的时效析出强化效应。  相似文献   

17.
研究了Al-Cu-Mg-Ag合金经时效处理165℃×2 h(欠时效态)后,在不同温度(150~300℃)和不同时间(0~1000 h)热暴露后的显微组织和性能.结果表明:在150℃热暴露下,随时间延长,其剩余强度先上升后下降,强度峰值出现在100 h,在1000 h后合金力学性能相对欠时效态无明显下降;在200~300℃热暴露时,合金的强度随时间的延长而下降,延伸率随着时间的延长而增大;在300℃热暴露时,合金的强度明显下降,暴露10 h后其抗拉强度为272.5 MPa,100 h后其抗拉强度降至114.5 MPa.欠时效状态的合金组织主要为均匀细小分布Ω相;随着暴露温度的升高,Ω相长大并粗化,晶界无析出带(PFZ)变宽.  相似文献   

18.
运用正交设计研究形变时效工艺(冷变形量、时效温度和时效时间)对低铍含量Cu-Ni-Be合金力学性能和电导率的影响,并通过光学显微镜、扫描电镜和透射电镜对其显微组织进行分析。研究结果表明:在形变时效处理的3个主要工艺参数中,时效时间对抗拉强度、屈服强度和相对电导率的影响最大,时效温度次之,冷变形量最小;合金在经过37.5%冷变形的轧制后,在470℃时效2h,γ″析出物细小且弥散分布在基体中,合金具有较好的综合性能。  相似文献   

19.
采用室温拉伸测试、断裂韧性测试并结合扫描电镜及透射电镜等组织分析方法,研究淬火水温(20~60 ℃)对7B50铝合金厚板组织和强韧性的影响,并探究不同时效处理制度对淬火水温的敏感性.研究结果表明: 7B50合金的室温拉伸性能对淬火水温不敏感,但断裂韧度随淬火水温改变变化显著,当淬火水温从60 ℃降至20 ℃时,峰时效态和过时效态合金的断裂韧性分别增加12.9%和11.4%.当淬火水温较高(40 ℃和60 ℃)时,与过时效态合金相比,峰时效态合金的断裂韧性对淬火水温更敏感.透射电镜观察揭示了晶界组织的差异导致的合金断裂韧度的变化.随着淬火水温降低,淬火态合金的晶界脱溶析出相尺寸逐渐减小,并且在时效处理后使晶界析出相尺寸减小、无沉淀析出带宽度变窄,特别是峰时效态合金的晶界析出相尺寸和晶界无沉淀析出带宽度随温度变化更为显著.  相似文献   

20.
为了研究微量稀土元素Ce对7020铝合金微观组织与性能的影响,对含Ce的7020铝合金进行三级均匀化热处理、固溶强化与双级时效处理;采用金相显微镜观察合金铸态与均匀化后的显微组织变化,采用电子显微探针分析合金显微图像,采用波谱仪分析合金各相的元素组成,采用显微硬度计测试时效处理后的合金硬度,采用电子万能试验机测试抗拉强度、屈服强度与延伸率等力学性能指标。结果表明,添加质量分数为0.12%的Ce后,铝合金晶粒显著细化,合金可以在时效处理时间为23 h时获得较大的合金强度与较好的硬化效果,在15 h时可获得强度、硬度与延伸率等综合性能均较理想的铝合金。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号