首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于数值仿真和台车冲击实验,研究轴向载荷下隔板、蜂窝填充对薄壁锥管变形模式、吸能性能的影响。考虑填充蜂窝尺寸影响,提出蜂窝分段均匀填充结构和梯度蜂窝填充结构2种改进方案,并分析其吸能特性。研究结果表明:在轴向载荷下,薄壁锥管、加隔板锥管、蜂窝填充带隔板锥管这3种结构的吸能量分别为73.2,133.2和221.0 kJ;隔板的增加使薄壁管的吸能量增加82.0%,填充蜂窝和隔板的增加使薄壁管的吸能量增加201.9%;由于蜂窝与薄壁管的相互影响,与原始蜂窝填充吸能结构相比,改进结构C1和C2在轴向冲击下的吸能量分别提高21.1%和24.3%;隔板与蜂窝的共同作用可以提高薄壁锥管的吸能量,同时变形更加稳定、有序可控。  相似文献   

2.
利用实验结合数值计算的方法研究蜂窝铝夹芯结构在受冲击载荷作用时的动力学特性;采用落锤装置对蜂窝铝夹芯结构在受到冲击载荷时的变形进行研究,建立有限元模型,并与实验值进行对比;分析落锤冲击破坏过程中蜂窝铝夹芯结构面板与蜂窝芯子在不同阶段的应力分布,讨论不同冲击速度对蜂窝铝夹芯结构面板凹痕深度与面积的影响,以及实验过程中落锤与试件之间的接触力和能量吸收效果。结果表明,随着落锤冲击速度的增大,面板和蜂窝芯子在最大凹痕深度处的应力峰值逐渐增大,应力波辐射范围增大,蜂窝铝夹芯结构吸收的能量也相应增大。  相似文献   

3.
组合式铝蜂窝低速冲击响应特性实验研究   总被引:1,自引:1,他引:0  
以组合式铝蜂窝为研究对象,通过改进SHPB系统,利用激光光通量位移计和PVDF压电薄膜测试技术,得到了铝蜂窝结构大应变低速压缩应力应变曲线;结合高速摄影分析了组合式铝蜂窝结构在低速撞击条件下的变形响应方式和吸能特性过程.结果表明,组合式蜂窝结构动态吸能可分为蜂窝嵌入过程和结构共同压溃两个阶段,对于厚度相同的两级组合式铝蜂窝结构这两个阶段的转换变形应变约为0.5,嵌入阶段所吸收的能量占总吸能比约为25%;组合蜂窝结构的吸能效率曲线存在两个相当的峰值,约为40%.与准静态结果对比,动态加载条件下,组合式蜂窝结构吸能效果更好.   相似文献   

4.
以类蜂窝结构为研究对象,讨论了不同冲击速度作用下该结构的面内冲击力学性能及能量吸收能力,并与传统的六边形蜂窝结构在不同方向冲击作用下的变形模式、比吸收能量进行了对比。研究结果表明:在低速冲击下,类蜂窝结构先后表现出V形、X形、K形及I形等局部变形特征;在中高速冲击下,类蜂窝结构中的六边形与四边形胞元交替压溃,并从冲击端的I形局部变形逐步扩展到固定端;随着冲击速度增大,类蜂窝表现出更强的能量吸收能力,且与六边形蜂窝相比,其能量吸收过程不受冲击方向的影响,更加稳定可靠。研究结论可望为进一步研究同一结构模型不同布置方式的类蜂窝结构的动态冲击特性提供依据。  相似文献   

5.
蜂窝铝面内动态压缩性能和吸能特性比较   总被引:1,自引:0,他引:1  
采用LS-DYNA有限元模拟分析对比,讨论了不同冲击速度和不同冲击方向下正六边形蜂窝结构的的变形机制和吸能特性。结果表明:中低速情况下, X_2方向下整个变形整体以塑性弯曲和堆叠为主较为复杂无序,X_1方向下变形模式相对稳定,高速情况下两者变形都主要体现为惯性。关于吸能的比较,相同速度下, X_2方向的吸能特性要优于X_1方向;不同速度下,无论哪个方向的能量吸收都伴随速度的提高而增大。  相似文献   

6.
从单块蜂窝的结构特点、准静态异面压缩吸能特性、消除初始峰值的预压缩方法和应变率效应等出发,提出串联蜂窝的合理结构形式,通过有限元仿真和撞击试验解决串联蜂窝失稳的问题。研究结果表明:将串联蜂窝放置在柱状筒体中约束其横向位移,相邻蜂窝间设置能抵抗蜂窝压力不均匀性的隔板,蜂窝与隔板粘接成无滑移整体结构,则当串联蜂窝组件进行高速撞击时,隔板不发生变形,并几乎不倾斜,蜂窝基本上处于异面压缩状态,整体变形模式好,具有较强的吸能能力。  相似文献   

7.
对空芯蜂窝铝(六边形孔)、聚氨酯、聚氨酯/蜂窝铝复合材料进行压缩试验,分析蜂窝铝和聚氨酯复合后的压缩力学行为及缓冲吸能特性.结果表明:复合材料的应力-应变曲线表现出弹性、屈服和密实三个阶段,初始刚度和屈服应力较空芯蜂窝铝有很大提高;蜂窝铝的加入使聚氨酯的变形回复降低25%;复合材料的最大吸能效率是单纯聚氨酯的1.47倍,且较大应力下复合材料具有比单纯聚氨酯更好的吸能效率;聚氨酯填充1 mm孔径蜂窝铝复合材料的最大吸能效率是聚氨酯填充2 mm孔径蜂窝铝复合材料的1.37倍;加载速率越大,吸能效率的峰值越大,且在达到最大吸能效率时的应力越大.  相似文献   

8.
提出了一种方形蜂窝填充薄壁复合结构,并采用实验研究与数值分析的方法研究了12种冲击工况下蜂窝填充薄壁结构与相应的非填充(薄壁空管)结构的耐撞性能.同时,结合Kriging近似技术与小种群遗传算法对蜂窝填充薄壁结构开展数值优化设计.结果表明,在各种冲击工况下,蜂窝填充薄壁结构吸收的能量都高于薄壁空管结构,且冲击的角度和速度对蜂窝填充薄壁结构吸能性能影响显著.在相同的冲击速度下,蜂窝填充薄壁结构吸收的能量随着冲击角度的增大而降低;在相同的冲击角度下,蜂窝填充薄壁结构吸收的能量随着冲击速度的增大而提高.对Kriging近似技术与小种群遗传算法优化所得蜂窝填充薄壁结构进行最优参数匹配,能够改善蜂窝填充薄壁结构的吸能性能.  相似文献   

9.
为探讨薄壁结构金属件在冲击载荷作用下的变形模态、受力特征等动态力学响应特性,对3种材料的薄壁圆柱壳体进行了不同速度的落锤冲击实验,获得了相同冲击条件下不同材料圆柱壳体的变形模态、吸能方式和轴向缩短率,以及冲击速度和径厚比对圆柱壳体吸能和轴向缩短率的影响规律. 研究结果表明:薄壁圆柱壳的轴向缩短率随着冲击速度增加而增加,由于应变率效应吸能能力也随着冲击速度增加而增加;薄壁圆柱壳体的轴向缩短率随着径厚比的增加而增加;动态冲击条件下的平均后屈曲载荷远大于准静态条件下的理论载荷,除了与圆筒直径、厚度以及材料特性相关外,还与冲击速度相关;通过非轴对称屈曲折皱变形来抗冲击A6060铝合金适合用于薄壁结构件.   相似文献   

10.
填充聚氨酯泡沫蜂窝纸板缓冲性能试验   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究复合缓冲材料的缓冲防震性能,将聚氨酯填充到蜂窝纸板的孔隙中制作了聚氨酯蜂窝纸板复合材料并对其进行落锤冲击试验和静态压缩试验。通过试验数据和应力-应变曲线,分析了该复合材料在静态和低速冲击条件下表现的力学行为,进而对其静、动态缓冲吸能性能进行对比研究。结果表明:蜂窝纸板材料的静态、动态吸能量均随孔径的增大而增大,动态吸能量增大的幅值更明显;复合材料的吸能量随蜂窝纸板孔径增大而增大,随纸板厚度增大而减小;复合后的材料较蜂窝纸板材料静、动态缓冲性能和吸能量都有了较大的提高。  相似文献   

11.
蜂窝结构作为一种仿生材料,在抗冲击吸能、轻量化等多个领域优势显著,得到了广泛研究。其中,双箭头蜂窝(Double-Arrow Honeycomb,DAH)在压缩载荷下较六边形蜂窝的平台应力更高,吸能性更好。为了进一步提升DAH的比吸能(Specific Energy Absorption,SEA),文中通过引入双弧形边代替DAH原有直边,提出一种弧形双箭头蜂窝(Circular Double-Arrow Honeycomb,CDAH),采用3D打印制备了CDAH样件并进行了准静态压缩试验;同时,基于有限元软件建立了CDAH的数值仿真模型,通过与试验结果的对比验证了模型的准确性;利用冲击波理论推导了CDAH的临界冲击速度,并结合验证后的数值模型研究了面内不同冲击速度下CDAH的动态响应。试验和仿真结果均表明:与DAH相比,CDAH的平台应力更高,比吸能也更大。其中,当应变达到0.6时,CDAH的SEA相较于DAH提升了71%,并且在中高速冲击下呈现明显的倒“V”和倒“U”形变形带,显示出良好的负泊松比特性;随着冲击速度提高,CDAH的平台应力与比吸能均显著提升,100 m/s下的平台应力...  相似文献   

12.
基于多胞材料独特的力学性能和微结构可设计性强的优势,提出一种多段三角形和六角形蜂窝填充能量吸收复合结构模型.利用显式动力有限元方法对该模型的动力响应特性和比吸能进行研究,重点讨论了不同恒定冲击速度下,蜂窝结构的排布及其相对密度对复合蜂窝结构宏观变形、动态平台应力、冲击载荷一致性和能量吸收能力的影响.研究结果表明,所设计的多段填充复合蜂窝结构能够让轴力和弯曲变形共同参与整体变形,实现I类和II类能量吸收结构的优势互补.通过对各段内微结构及段长的合理选择,复合蜂窝结构的冲击载荷效率明显提高,冲击应力波动幅度明显降低,能够有效地提高并控制蜂窝结构能量吸收效率.本文对完善多胞结构的耐撞性设计方法和控制能量吸收过程具有指导意义.  相似文献   

13.
铝蜂窝异面压缩吸能特性实验评估   总被引:1,自引:0,他引:1  
基于准静态实验与台车动态撞击实验,对不同规格铝蜂窝试件开展吸能能力特性评估;分析准静态与动态冲击条件下,各铝蜂窝的平台强度、比载荷、质量比吸能、体积比吸能与厚跨比的相关性,研究吸能特性与孔格疏密程度、蜂窝表观密度的关系.研究结果表明:该类蜂窝低速冲击较准静态压缩吸能能力提升约1.33倍;平台强度、比载荷、质量比吸能、体积比吸能均随厚跨比的增大呈幂次增大,幂次分别约为1.53,0.67,0.67,1.48;吸能能力随厚跨比的增大而提升,体积比吸能的增加较质量比吸能的增加更明显;所绘的蜂窝能量吸收图表征了实时平台应力与单位体积吸收能量的对应关系;曲线肩点反映了不同厚跨比蜂窝的最优吸能设计点,由系列蜂窝的肩点包迹线性方程表达式可反演设计出满足工程能量需求的蜂窝产品.  相似文献   

14.
为研究铝蜂窝夹芯三明治结构的弹道防护特性,设计并实施了一系列速度在100~250 m/s之间的弹道冲击实验. 研究了在不同冲击速度、面板厚度、芯层密度和弹丸头部形状等条件下,该结构的能量吸收特性和弹道极限. 结果表明,铝蜂窝夹芯能有效提高三明治板的抗弹能力,并且对高速弹丸防护能力的提高作用更加显著. 在弹速相同的条件下,结构对平头弹丸的能量吸收低于圆头和尖头弹丸.  相似文献   

15.
采用ABAQUS对一种二阶层级自相似六边形蜂窝的面内压缩行为进行了数值模拟,对其在不同冲击速度下的变形模式进行了研究,并通过能量平衡的方法建立了层级蜂窝面内压缩平台应力理论模型,理论结果与数值模拟结果吻合较好。研究结果表明,不同冲击速度冲击下层级蜂窝在面内压缩存在3种变形模式,分别为准静态模式(X Mode)、过渡模式(V Mode)以及冲击模式(I Mode)。冲击速度是影响层级蜂窝面内变形模式的主要因素,随着冲击速度的增加,层级蜂窝面内变形从准静态模式逐渐向冲击模式过渡。将层级结构引入到普通蜂窝中形成层级蜂窝,面内压缩变形时,一阶胞孔的孔壁变形是孔壁绕角点的旋转与孔壁长度缩短两种变形机制的组合。  相似文献   

16.
基于显式有限元方法,应用LS-DYNA软件,对带隔板薄壁方管的耐撞性进行研究。研究结果表明:隔板提高了方管变形的稳定性;在准静态载荷下,初始压缩力峰值随壁厚的增加而增加,但隔板数对初始压缩力峰值的影响很小,结构的吸能量、比吸能、压缩力效率值均随壁厚和隔板数的增加而增加;Cowper-Symonds材料模型中硬化系数β对初始压缩力峰值没有影响,而吸能量随β的增加而增加,在压溃距离为600 mm时,硬化系数为1相比为0时,吸能量增加了8.97%;考虑应变率效应时,吸能量相比准静态时有显著提高,但应变率效应在低速时影响更加明显。  相似文献   

17.
通过在正六边形蜂窝结构的节点上增加次级六边形蜂窝结构,形成一种层级蜂窝芯层结构,利用LS-DYNA有限元软件分析了层级蜂窝铝夹芯板在爆炸载荷作用下的动力响应和吸能特性,研究了载荷与芯层构型对结构变形和能量吸收的影响,并与传统蜂窝铝夹芯板进行了对比.结果表明:在所研究的范围内,当载荷较小时,传统蜂窝铝夹芯板的后面板挠度较小;当载荷较大时,多层级蜂窝铝夹芯板的后面板挠度较小,抗冲击能力较好,并且这种优势随着载荷的增加愈加明显;改变芯层层级参数对结构后面板挠度的影响较小,但对芯层比吸能有较大的影响,当层级参数为0.1时,芯层比吸能最高.  相似文献   

18.
为了进一步研究吸能器的机理,采用实验和数值模拟相结合的方法,对冲击载荷作用下6060T5铝圆环列系统的动力学行为进行了研究。采用改进的SHPB实验系统并配以高速摄影设备,分别记录圆环列的入射波、透射波波形变化及变形过程。数值研究前,利用实验数据对计算模型和计算参数进行验证和标定。对工程实际中的若干工况进行了数值分析。结果表明,圆环列吸能器具有较高的吸能率,该系统通过弯曲塑性变形能来消耗冲击能量,回弹发生后整个吸能过程结束。在工程实际中,双层疏排圆环列组合方式是较好的选择。  相似文献   

19.
为了进一步研究吸能器的机理,采用实验和数值模拟相结合的方法,对冲击载荷作用下6060T 5铝圆环列系统的动力学行为进行了研究。采用改进的SHPB实验系统并配以高速摄影设备,分别记录圆环列的入射波、透射波波形变化及变形过程。数值研究前,利用实验数据对计算模型和计算参数进行验证和标定。对工程实际中的若干工况进行了数值分析。结果表明,圆环列吸能器具有较高的吸能率,该系统通过弯曲塑性变形能来消耗冲击能量,回弹发生后整个吸能过程结束。在工程实际中,双层疏排圆环列组合方式是较好的选择。  相似文献   

20.
列车耐碰撞系统有限元和多体动力学联合仿真   总被引:3,自引:1,他引:2  
研究基于有限元和多体动力学技术进行列车耐碰撞系统设计的联合仿真策略.通过非线性有限元分析获得车辆吸能部件在碰撞时的力—位移关系曲线,以该曲线模拟车辆连挂之间的非线性弹簧特性,运用多体动力学技术进行了两列车的碰撞动力学仿真.通过仿真分析碰撞中列车各车辆间的作用力、变形、速度、加速度以及各个吸能部件的能量吸收等数值,实现了对新设计列车碰撞被动安全系统总体性能的评估.与高速碰撞相比,在中低速碰撞工况下,头车与第2节车体端部连接处吸收的动能占总动能的比例更高.联合仿真能较真实地模拟列车碰撞的全过程,验证了联合仿真策略的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号