首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据波形钢腹板PC组合箱梁的特性,运用Hamilton原理推导了波形钢腹板PC组合箱梁考虑剪切变形时的扭转振动频率计算公式.以5.2 m波形钢腹板试验梁为对象进行了模态试验,并利用有限元软件ANSYS建立波形钢腹板PC组合箱梁的模型进行模态分析.通过对试验梁模态试验的扭转振动频率的实测值、理论计算值以及有限元分析数据进行对比分析,证明了理论公式推导的正确性,论证了有限元模型的适用性,并通过分析得出剪切变形对波形钢腹板PC组合箱梁的扭转振动性能有较大影响.文中还利用参数分析的方法,分析波形钢腹板厚度以及波折角对该组合箱梁的扭转振动频率的影响,结果表明:随着钢腹板厚度的增加,波形钢腹板PC组合箱梁的扭转振动频率相应增大;随着钢腹板波折角的增大,波形钢腹板PC组合箱梁的扭转振动频率有所减小.  相似文献   

2.
为分析薄壁箱梁考虑剪切变形影响时的弯曲自振频率,将箱梁翼板、腹板受剪切变形影响的纵向位移综合为一个函数表达式.基于此表达式及Hamilton原理,运用能量变分法建立薄壁箱梁的弯曲自振频率控制微分方程.根据边界条件求解考虑剪切变形影响的简支箱梁弯曲自振频率.进而利用三弯矩法,得到等截面连续箱梁的弯曲自振频率表达式.数值算例结果表明,按照所得公式计算出的连续箱梁考虑了剪切效应的弯曲振动频率,与基于ANSYS空间壳单元及考虑剪切效应的梁单元有限元模型的计算结果均吻合较好.考虑剪切变形时,薄壁箱梁的弯曲自振频率减小,且随着自振频率阶数的增加,剪切变形影响逐渐增大,因此在求解薄壁箱梁的高阶自振频率时剪切变形的影响不可忽略.  相似文献   

3.
体外预应力对波形钢腹板箱梁自振频率的影响分析   总被引:1,自引:0,他引:1  
为了研究体外预应力对波形钢腹板箱梁动力特性的影响,推导了波形钢腹板箱梁在体外预应力作用下的自振频率计算公式.以5.2 m缩尺波形钢腹板试验梁为对象,利用有限元软件ANSYS建立了预应力波形钢腹板箱梁的模型,对其进行了模态分析.通过对试验梁模态试验的自振频率测试数据与理论计算值以及有限元分析数据进行对比,证明了理论公式推导的正确性,论证了有限元模型的适用性.采用理论计算和有限元数值计算相结合的方法,研究了体外预应力钢束拉力、锚固位置以及截面积对波形钢腹板自振频率的影响.研究结果表明:三者对波形钢腹板箱梁自振频率的影响均较小,在实际工程中可以忽略体外预应力对波形钢腹板箱梁动力特性的影响.  相似文献   

4.
为了分析波形钢腹板连续箱梁桥的结构参数对其自振的影响,以郑州市陇海路高架常庄水库桥为依托,利用ANSYS软件建立3跨精细有限元模型,分析预应力、波形钢腹板的波折角度、单板宽度、腹板厚度等结构参数,以及横隔板数量对连续体系波形钢腹板组合箱梁自振特性的影响.分析表明:预应力张拉产生"应力软化"效应引起结构总刚度降低,结构的频率降低;另一方面,体外束预应力使得混凝土处于复杂应力状态,通过弹性模量修正,自振频率会随着预应力束张拉力的增大而增大,可与试验结果吻合;振动频率随波折角度的增大表现为先增大后减小,然后会出现小幅度增长;振动频率随着水平板宽的增加表现为先增大后减小;竖向振动频率、纵向振动以及扭转频率均随着腹板厚度的增加而增大,横向振动频率随着腹板厚度的增加而减小;增加横隔板数量能明显提高箱梁的扭转振动频率,但扭转频率的增长速率随着横隔板数量的增加逐渐降低.  相似文献   

5.
波形钢腹板PC组合箱梁桥抗弯承载力计算   总被引:17,自引:2,他引:17  
结合波形钢腹板PC组合箱梁桥抗弯特性,对该类桥的抗弯承载能力计算方法进行了探讨。分析了波形钢腹板组合箱梁有效分布宽度、偏载效应的已有研究成果,参考国外对该类桥中体外预应力筋的有效高度和极限应力取值,根据弯曲理论推导出波形钢腹板PC组合箱梁桥抗弯承载能力计算公式。模型梁算例表明,该计算方法简单可行。  相似文献   

6.
目前有关钢-混组合箱梁桥的剪切变形对其荷载横向分布影响的研究较少。首先,在考虑自身剪切变形的基础上,采用正弦荷载得出刚度折减系数,并推导出了考虑剪切变形效应的偏心压力法、修正偏心压力法以及考虑剪切变形效应的刚接梁法等,用于计算多梁式波形钢腹板-钢底板-混凝土顶板(简称改进型波形钢腹板,即CSWSB)组合小箱梁桥横向荷载分布系数的方法的计算公式;然后,选取一多梁式改进型波形钢腹板组合小箱梁桥实桥进行了试验研究;最后将采用文中讨论的各计算方法计算得到的结果与有限元法结果、试验实测值进行了对比分析。结果表明:采用考虑剪切变形效应的刚接梁法得到的挠度值和Ansys模拟值更为接近,计算跨中的荷载横向分布系数时应采用考虑剪切变形效应的刚接梁法;当桥梁结构不满足窄桥条件时,宜采用考虑剪切变形效应的刚接梁法计算跨中截面的荷载横向分布系数;当满足窄桥条件时,可以采用考虑剪切变形效应的修正偏心压力法计算横向分布系数。  相似文献   

7.
为了研究波形钢腹板结构参数对箱梁扭转特性的影响,本文建立了波形钢腹板简支箱梁桥的有限元模型,通过改变波形腹板的结构参数(板厚,水平板宽,腹板折角)计算分析试验梁扭转特性。结果表明:波形腹板折角增大时,能较大的提高扭转振动频率;在一定范围内腹板厚的增大时,能有效提高扭转振动频率;水平板宽的增大使箱梁的扭转振动频率先增大后减小,因此,须合理选择最佳板宽。另外,通过在试验梁不同位置增设横隔板以及不同横隔板厚度的方案研究了波形钢腹板梁的扭转动力特性,结果表明:在端部增设横隔板能有效的改善其扭转动力特性;横隔板越厚,梁体自重越大,所以扭转刚度先增大后减小。以上结果可进一步为波形钢腹板箱梁的动力特性以及优化其结构设计提供理论支撑。  相似文献   

8.
为克服传统大跨预应力混凝土(Prestressed Concrete, PC)连续梁桥自重过大、跨中过度下挠和腹板开裂的问题,将超高性能混凝土(Ultra-high Performance Concrete, UHPC)与波形钢腹板(Corrugated Steel Web, CSW)组合,提出大跨径CSWs-UHPC组合连续箱梁桥方案,对该结构的静力性能和抗震性能进行了计算分析,并将其与CSWs-普通混凝土(Normal Concrete, NC)组合连续箱梁桥和PC连续箱梁桥进行对比,结果表明:相比CSWs-NC组合箱梁桥和PC箱梁桥,CSWs-UHPC组合箱梁桥的自重分别降低45%和54%;CSWs-UHPC组合箱梁桥耐久性强、全寿命周期内的经济性具有竞争力;静力计算结果满足规范要求;合理中支点梁高与中跨跨径比Hs/L为1/16~1/22,中跨跨中与中支点合理梁高比Hm/Hs为1/1.5~(-0.2+0.029L/Hs);CSWs-UHPC组合箱梁桥横向弯曲自振频率小于PC箱梁桥,竖向弯曲自振频率略大于CSWs-NC组合箱梁桥及PC箱梁桥,较轻的上部结构可大幅降低惯性荷载,使CSWs-UHPC组合箱梁桥具有优异的抗震性能.这种新型组合桥梁可有效克服大跨径连续梁桥下挠、开裂的病害,大幅降低地震响应,是大跨径连续梁桥中具有较强竞争优势的结构型式.  相似文献   

9.
为了研究节段预制波形钢腹板PC组合箱梁的力学性能,在考虑施工工艺和配束比影响的前提下,设计制作了3根缩尺模型试验梁进行受力性能试验研究.对比和分析了整体浇筑波形钢腹板PC组合梁和节段预制波形钢腹板PC组合梁力学性能的异同,提出了节段预制波形钢腹板PC组合箱梁抗弯承载力计算公式.结果表明:混凝土开裂后,节段预制梁刚度退化明显大于整浇梁,全体外配束节段预制梁刚度下降最为显著;节段预制梁钢腹板抗弯贡献明显大于整浇梁,接缝处截面尤为明显;相比于整浇梁,节段预制梁体外应力筋的应力增量较大,且增长速度快;与整体梁抗弯承载力计算公式相比,提出的节段预制波形钢腹板PC组合箱梁抗弯承载力计算公式的计算值与试验结果吻合更好.  相似文献   

10.
为准确计算波形钢腹板混凝土组合梁的挠度,推导了考虑剪切变形影响的波形钢腹板混凝土组合梁的挠曲线初参数方程.首先分析了波形钢腹板混凝土组合梁截面上剪应力的分布特点,得到了腹板剪应力的简化计算公式;然后推导了其挠曲线的初参数方程,提出了组合梁挠度的计算方法,进而对承受跨中集中荷载、两点对称荷载和均布荷载等3种典型荷载作用下的波形钢腹板混凝土组合梁的挠度进行分析,并将其结果与试验实测值、有限元结果进行比较,验证了文中理论方法的准确性和适用性;最后利用文中理论方法和有限元方法分析了跨高比和宽高比对波形钢腹板混凝土组合梁剪切变形的影响,并给出了波形钢腹板混凝土组合梁挠度计算是否需要考虑剪切变形影响的跨高比界限建议值.  相似文献   

11.
为了研究节段预制拼装波形钢腹板连续组合箱梁的抗剪性能,制作两片缩尺试验梁,包括节段拼装变截面波形钢腹板连续箱梁和相同尺寸的整体浇筑变截面波形钢腹板连续箱梁. 通过静力试验和数值分析,得到了节段拼装梁的剪应力分布规律、波形钢腹板承剪比例等. 结果表明:在中跨对称加载作用下,中跨1/4位置处节段拼装梁与整体梁波形钢腹板的剪应力沿梁高方向均匀分布,节段拼装梁的剪应力值要大于整体梁的相应值. 推导出节段拼装变截面波形钢腹板组合箱梁的剪应力计算公式,并考虑施工工艺对剪应力的影响,通过与实测值对比验证公式的准确性. 两片试验梁的波形钢腹板的承剪比受荷载影响较小,保持一个恒定的比例;两片试验梁在中支座位置处的钢腹板承剪比均为50%,并沿着试验梁纵向方向向两侧不断增大;在中跨1/4位置,节段拼装梁钢腹板的承剪比达到85%以上,整体梁的钢腹板在该位置的承剪比在75%左右,两片试验梁在边跨相应位置承剪比相差不大. 将适用于节段拼装混凝土箱梁的AASHTO接缝抗剪强度计算公式乘0.9可用于接缝截面抗剪承载力计算;上述公式值与试验值、有限元结果的误差在5%左右,可以较好地预测钢混组合结构胶接缝的抗剪强度.  相似文献   

12.
为了更精确地求解波形钢腹板组合箱梁的挠度,通过分析该组合箱梁挠曲剪应力分布特点,结合虚功原理,推导出考虑全截面剪切影响的剪切形式因子.基于能量变分原理,推导出该组合箱梁剪切附加挠度的控制微分方程,并给出一般荷载条件下简支箱梁剪切附加挠度的表达式.数值算例结果表明,考虑剪切变形影响计算的组合箱梁挠度与ANSYS空间有限元计算结果及实测值吻合良好,剪切变形对组合箱梁的挠度影响较大.参数分析结果表明:随着宽高比的增大,采用剪切系数方法计算所得的组合箱梁附加挠度也增大;随着跨高比的增大,波形钢腹板剪切变形产生的附加挠度不断减小,当跨高比大于40时,可忽略腹板剪切变形的影响.  相似文献   

13.
波形钢腹板PC组合箱梁桥是一种新型的钢-混凝土组合结构,在这种结构中用波形钢腹板替代了预应力混凝土箱梁的混凝土腹板[1]。本文在总结国内外研究资料的基础上,结合波形钢腹板预应力混凝土连续刚构桥的受力性能,采用空间有限元软件MIDAS,主要分析结构的动力特性。  相似文献   

14.
结合钢腹板连续组合箱梁的结构受力特点和混凝土与钢材的连接特点,针对单箱双室波形钢腹板连续组合箱梁桥进行了有限元分析,有限元分析模型以红棉大道工程一期主桥为依托,利用商业软件midas,对单箱双室波形钢腹板连续组合箱梁桥进行抗弯计算、抗剪计算,以其有限元计算的数据为基准,揭示了该工程针对大跨度单箱双室波形钢腹板连续组合箱梁桥的设计的改善方法.  相似文献   

15.
孟磊  刘皓楠  王用中 《科技信息》2009,(13):257-258
详细介绍了波形钢腹板PC箱梁的技术特点及发展历程,同时以国内外相关理论、试验研究以及实桥设计与施工资料的收集分析为基础,结合波形钢腹板PC箱梁桥的构造、受力特点及施工工艺对波形钢腹板PC箱梁桥的经济效益作了详细分析,论证了波形钢腹板PC箱梁桥推广的必要性。  相似文献   

16.
通过建立大量的波形钢腹板预应力混凝土组合箱梁桥空间有限元模型,计算和分析钢腹板尺寸参数的变化对弯-扭耦合作用下箱梁钢腹板屈曲临界荷载系数及屈曲模态的影响规律。计算及分析结果表明:跨中偏载作用下,波形钢腹板的屈曲总是发生在跨中偏载一侧的腹板上;当只有箱梁的高跨比变化或当只有波形钢腹板的厚度变化时,在不同的折叠角度范围内,其腹板抗屈曲能力的变化幅度不同,但当折叠角度一定时,则腹板抗屈曲能力或箱梁抗扭能力的变化幅度基本相同;当只有腹板折叠角度变化时,在不同箱梁高跨比范围内,其箱梁抗扭能力的变化幅度也不同。  相似文献   

17.
波形钢腹板的设计方法   总被引:2,自引:0,他引:2  
针对大跨径波形钢腹板PC组合箱梁结构中的波形钢腹板的失稳破坏形式,分别对波形钢腹板的剪应力、局部屈曲强度、整体屈曲强度以及合成屈曲强度进行了计算,绘制出了波形钢腹板局部剪切屈曲界限图和整体剪切屈曲界限图,给出了波形钢腹板的一般设计方法和步骤,并将世界上已建的部分波形钢腹板PC组合箱梁桥的波形钢板的设计资料进行了归纳整理.验证结果表明,剪切屈曲界限图可用于波形钢腹板的参数设计,山东鄄城黄河大桥控制参数均位于适用范围内,为波形钢腹板的设计提供了依据.  相似文献   

18.
建立具有连续分布参数的功能梯度材料Euler梁、Timoshenko梁自由振动的动力学方程,以常微分方程求解器为工具,分析计算这两种梁的自振频率;同时讨论Timoshenko梁的自振频率和振型随梁的参数而变化的规律,给出Timoshenko梁的弯曲振动弹性波和剪切振动弹性波的传播速度,分析弯曲和剪切耦合振动的特点和规律.结果表明:常微分方程求解器解和解析解几乎具有同样的精度;自振频率的大小取决于梁在振动时的弹性波的波速;Timoshenko梁在每个频率下的振动均为弯曲和剪切的耦合振动.  相似文献   

19.
游正君  曹萱  严靖 《工程与建设》2021,35(1):37-40,51
基于凉水特大桥设计文件,拟设计一波形钢腹板PC组合连续刚构桥,利用Midas Civil软件建立波形钢腹板PC组合箱梁桥模型并进行结构验算.结果 表明:持久状态下承载能力极限状态和正常使用极限状态以及短暂状况下预应力混凝土构件受力均满足验算.研究结论对于波形钢腹板PC组合箱梁桥的推广与应用具有重要意义.  相似文献   

20.
进行波形钢腹板-混凝土组合箱梁和平钢腹板-混凝土组合箱梁的模型试验.提出模拟钢腹板-混凝土组合结构的有限元方法,并在大型通用程序ANSYS中实现.有限元计算结果得到了模型梁试验结果的验证,可用于钢腹板-混凝土组合结构的数值分析.试验与数值分析结果表明,两种组合箱梁的总体受力在弹性阶段和弹塑性阶段相似.相对于平钢腹板-混凝土组合箱梁,波形钢腹板-混凝土组合箱梁由于波形钢腹板的折迭效应,其抗变形能力和抗裂性能较相对较弱,但抗剪性能和抗屈曲能力较好.在破坏模式上,波形钢腹板-混凝土组合箱梁属于整体破坏,平钢腹板-混凝土组合箱梁属于平钢腹板局部屈曲破坏,其极限承载力小于波形钢腹板-混凝土组合箱梁.平钢腹板刚度小,在实际工程应用过程中应进行加劲,以防止局部屈曲破坏早于整体破坏的发生,同时也有利于避免施工过程的局部变形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号