首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用溶剂挥发法,以丙酮和DMF做混合溶剂制备PVDF-HFP/PMMA聚合物电解质,通过X射线衍射、热失重分析、交流阻抗、恒流充放电循环及倍率充放电等测试手段,考察了PMMA的添加量对聚合物电解质性能的影响.研究发现当PMMA的添加量为50%时,聚合物电解质表现出最佳性能,室温离子电导率从0.26 m S/cm提升到1.35 m S/cm,以Li Co O2作正极材料,锂片作负极材料组装的聚合物锂离子电池初始容量从80.1 m Ah/g提升到143.6 m Ah/g,在0.2 C倍率条件下,50个循环后容量保持率还能达到80%,表现出优异的锂离子电池性能.  相似文献   

2.
采用尖晶石LiMn2O4材料制作了18650型锂离子电池, 分析了影响锂离子电池大电流放电性能的主要因素如极耳、极片、电解质溶液等。又采用新型正极材料LiMnxNiyCozO2开发出性能更优越的18650型高功率锂离子电池, 该电池可10C连续放电和8C快速充电, 并具有优秀的循环性能和搁置性能。18650型高功率锂离子电池的开发, 为研制混合电动车(HEV)用高功率锂离子电池提供了实验依据。  相似文献   

3.
通过掺杂过渡金属元素铜,成功得到了粉末振实密度超过2.8g/cm3的高密度的锂离子电池正极材料LiCoO2.其初始放电比容量超过140mAh/g,以1C倍率充放电300周后,容量保持率大于90%,显示出良好的循环性能.SEM照片显示材料颗粒致密、表面光滑,粒径主要分布在5~10μm.安全测试结果表明其达到安全标准.此类LiCoO2材料的应用将有利于提高目前锂离子电池的体积能量密度.  相似文献   

4.
采用尖晶石LiMn2O4材料制作了18650型锂离子电池,分析了影响锂离子电池大电流放电性能的主要因素如极耳、极片、电解质溶液等。又采用新型正极材料LiMnxNiyCozO2开发出性能更优越的18650型高功率锂离子电池,该电池可10C连续放电和8C快速充电,并具有优秀的循环性能和搁置性能。18650型高功率锂离子电池的开发,为研制混合电动车(HEV)用高功率锂离子电池提供了实验依据。  相似文献   

5.
在锂离子电池充放电过程中,电解液与电极材料发生反应,形成的固态电解质膜(solid electrolyte interphase,SEI)随着充放电次数的增加而变厚,这将降低电池的循环稳定性。所制备的人工固态电解质膜(a-SEI)可改善锂离子电池的循环稳定性,其主要成分为使用液相法制备的氟化锂(LiF)、氮化亚铜(Cu 3N)纳米颗粒。通过两种不同路径,将两种纳米颗粒先后在锂离子电池正极三元材料LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)电极片表面和活性材料颗粒表面涂覆生成一层a-SEI。使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电化学阻抗谱(EIS)等材料表征和电化学分析方法,解析a-SEI对锂离子电池循环稳定性的影响。结果表明,NCM811材料表面包覆Cu 3N作为a-SEI的电化学性能最好,相比纯NCM811材料,50周循环后的容量保持率可提升26.5%。  相似文献   

6.
以钛酸四丁酯为掺杂剂,抗坏血酸为碳源,采用溶胶-凝胶法合成Ti~(4+)掺杂的锂离子电池正极材料Li_2FeSiO_4。通过X线衍射(XRD)、场发射扫描电子显微镜(FESEM)、高频红外碳-硫分析仪、循环伏安及恒电流充放电测试等表征手段分析了Ti元素掺杂对Li_2FeSiO_4结构、形貌、放电容量、循环稳定性的影响。结果表明:掺Ti减小了Li_2FeSiO_4颗粒尺寸,增加了其与电解液间的接触面积,提高了锂离子的迁移率,从而提高了放电容量。在10 mA/g电流密度下,Ti掺杂的试样首次充放电容量分别为206.9 mA·h/g和172 mA·h/g;未掺杂的试样的充放电电容量分别为169.1 mA·h/g和143.7 mA·h/g。  相似文献   

7.
磷酸铁锂(LiFePO4)为橄榄石结构,是一种常见的锂离子电池正极材料,其理论比容量为170 mAh/g,工作电压为3.2 V,电子导电率为1×10-10~1×10-9 S/cm.本文主要以锂离子电池磷酸铁锂正极材料的相关专利申请作为研究对象,对锂离子电池磷酸铁锂正极材料的掺杂技术和包覆技术的专利文献进行分析.通过分析...  相似文献   

8.
The researches on solid electrolyte have been significantly increasing due to the safety problem in lithium ion battery.The lithium phosphates are chosen due to environmentally friendly.In the present study Li_4 P_2 O_7 was synthesized by solid state reaction using NH_4 H_2 PO_4 and Li_2 CO_3 with the ratio 1:2 at various temperatures of600 ℃,800 ℃ and 900℃.The products were characterized by x-ray diffraction,scanning electron microscopy and impedance spectroscopy.The x-ray diffraction showed that all samples consisted of two phases.It was found that the products consisted of 52.44% Li_4 P_2 O_7 and 47.56% LiPO_3;93.56% Li_4 P_2 O_7 and 6.44% Li_3 PO_4;and46.27% Li_4 P_2 O_7 and 53.67% Li_3 PO_4 under the synthesizing temperature of 600 ℃,800℃ and 900 ℃,respectively.The highest ionic conductivity of 3.85 ×10~(-5) S/m was achieved for composite Li_4 P_2 O_7-Li_3 PO_4 with the highest content of 93.56% Li_4 P_2 O_7.This conductivity is higher compared with single phase of LiPO_3,Li_3 PO_4 and Li_4 P_2 O_7.The increase in ionic conductivity may be due to the mixed anion effects related to the phosphate networks,and it also corresponds to the existence of anorthic phase Li_4 P_2 O_7 with the space group P-1(2).The crystal lattice analysis showed that the reactant Li_4 P_2 O_7 consisted of diphosphate groups P_2 O_7.The lithium tetrahedral LiO_4 were linked to P_2 O_7 groups formed a continuous framework containing large voids,available for Li~+ ion transport,and thus it exhibited high conductivity.A composite Li_4 P_2 O_7-Li_3 PO_4 is a promising solid electrolyte for solid state battery.  相似文献   

9.
与锂离子电池相比,锂硫电池具有较高的理论能量密度。然而,硫具有较差的电子导电性,以及充放电过程中体积膨胀和放电产物多硫化锂的"穿梭效应",这将导致实际应用中电池的循环寿命很差。在本文中,利用溶剂插层剥离法将MoS_2体相材料剥离成超薄的纳米片。后续通过简单的真空抽滤法将高导电性的碳纳米管和超薄MoS_2纳米片的乙醇分散液依次修饰在商用聚丙烯隔膜上。电化学测试结果表明,使用CNT+MoS_2/PP隔膜的锂硫电池在1C下显示出了924.4 mAh/g的高容量,200次循环后保持573.7 mAh/g的高可逆容量,容量保持率为80.3%,每圈容量衰减率仅为0.098%,明显优于使用聚丙烯隔膜的电化学性能。这主要是由于超薄的MoS_2纳米片能够有效地吸附长链多硫化物(Li_2S_x,4≤x≤8),同时高导电性的碳纳米管能够高效地将其还原成Li_2S_2/Li_2S,从而抑制了多硫化物的"穿梭效应"。  相似文献   

10.
以N,N-二甲基甲酰胺为溶剂,聚偏氟乙烯-六氟丙烯为聚合物基质,采用直接挥发溶剂法制备正极自支撑的聚合物电解质,并以锂为负极制备LiCoO2聚合物电池.用扫描电子显微镜和循环伏安实验对聚合物电解质进行表征,用红外光谱分析了电解质微孔的形成机理,并对聚合物电池的充放电性能和界面阻抗进行测试。结果表明:直接挥发溶剂制得的聚合物电解质孔穴丰富,电化学稳定窗口达5.5 V.采用正极自支撑电解质可改善材料的力学性能,降低电池的界面阻抗;制备的聚合物电池界面性质稳定,循环40次后容量保持率为97.5%,0.5C和1C倍率放电分别能保持0.1C放电容量的97.8%和95.7%.  相似文献   

11.
LiNi_(0.8)Co_(0.2)O_2的表面修饰及性能   总被引:3,自引:0,他引:3  
锂离子电池正极材料和电解液之间的恶性相互作用引起正极材料和电池性能的劣化。将 L i Ni0 .8Co0 .2 O2 ,L i OH.H2 O和 H3BO3以摩尔比 10 0 :1:2均匀混合 ,5 0 0℃热处理 10 h,在 L i Ni0 .8Co0 .2 O2 表面包覆上一层 L i2 O- 2 B2 O3玻璃层。用 X光电子能谱、扫描电镜和 X光衍射分析对包覆前后 L i Ni0 .8Co0 .2 O2 的结构进行了表征。结果表明 ,表面修饰有效地抑制了 L i Ni0 .8Co0 .2 O2 和电解液之间的恶性相互作用 ,材料的实际比容量提高 ,充放电循环稳定性改善 ,自放电速率减小。表面修饰处理是改善锂离子电池正极材料综合性能的有效途径  相似文献   

12.
本文以H_3PO_4、Ti O_2、Al_2O_3和草酸钠为原料,合成了复合电解质Ti_(0.95)Al_(0.05)P_2O_7/Na PO_3/Na Ti_2(PO_4)_3。采用XRD对复合电解质的结构进行了表征。研究了其在400-800℃范围内的电导率,并以Ti_(0.95)Al_(0.05)P_2O_7/Na PO_3/Na Ti_2(PO_4)_3为电解质隔膜组装了H_2/O_2燃料电池。XRD结果表明反应物经过充分反应,形成了三元复合电解质。800℃时,Ti_(0.95)Al_(0.05)P_2O_7/NaPO_3/Na Ti_2(PO_4)_3有最高电导率6.0×10~(-2)S·cm~(-1)。800℃时开路条件下复合电解质的极化电阻值为0.23Ω·cm~2,燃料电池最大功率密度为90.6 m W·cm~(-2)。  相似文献   

13.
采用高温固相浸渍法合成了多元复合掺杂尖晶石型锰酸锂Li 1.02MxMn 2-xQyO 4-y正极材料.XRD表征合成的产物均为良好的尖晶石型结构材料;SEM表明所合成的产物颗粒均匀且有良好的粒径分布.以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:多元素掺杂的尖晶石型锰酸锂正极材料Li 1.02CoaCrbLacMn 2-a-b-cFyO 4-y较富锂尖晶石和单元素Co、Cr掺杂的正极材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性,80次循环后放电容量仍能保持94.5%以上;特别是高温(55 ℃)性能更加突出,40次循环后放电容量仍能保持102.1mA.h/g(91.5%)以上.作为锂离子电池的正极材料,该复合掺杂材料是众多取代钴酸锂材料中最具竞争力的材料之一,也有望成为锂离子动力电池的正极材料.  相似文献   

14.
利用溶剂转换法制备新型锂离子电池凝胶聚合物电解质(GPE).通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、热重(TG)分析、广角X射线衍射(WXRD)、力学拉伸及交流阻抗等测试,分析了细菌纤维素凝胶聚合物电解质的微观形态、结构以及电化学性能.研究结果表明:室温下细菌纤维素凝胶聚合物电解质的离子电导率高达1.6×10-2S/cm,拉伸强度达到39.8MPa,其在锂离子电池开发中具有良好的应用前景.  相似文献   

15.
废旧锂离子电池正极材料钴酸锂层状结构的活化研究   总被引:1,自引:0,他引:1  
为了实现废旧锂离子电池材料的再利用,本文采用热重-差热分析法对废旧锂离子电池正板材料钴酸锂做了分析研究.根据它的热稳定,通过在400℃和600℃下保温,分别将粘结剂PVDF和碳粉除去,使其活化再生,并对其活化机理进行了讨论.通过XRD表征及分析,结果表明:失效的钴酸锂正极材料经过焙烧活化后,纯度较高,结晶度提高,晶体结构恢复成为规整层状结构,离子排列有序,有利于锂离子在晶体中有效嵌入和脱出.  相似文献   

16.
以乙二胺为溶剂,锡粉和红磷为原料,利用微波溶剂热方法合成出Sn_4P_3/MWCNTs复合材料。利用X射线衍射和透射电子显微镜对其进行定性分析和微观形貌观察,对其作为锂离子负极材料的电化学性能进行研究。在电流密度为500 mA/g时,当Sn_4P_3/MWCNTs的质量比为3∶1时放电容量能达到517 mAh/g,Sn_4P_3/MWCNTs复合材料有望成为一种新型锂离子电池负极材料。  相似文献   

17.
采用化学共沉淀法和高温固相反应法制备了锂离子电池梯度正极材料LiNi112xCoxMnxO2.通过X射线衍射(XRD)、热重-差热分析(TG-DTA)、充放电测试对材料的微观结构及在水系电解液中的电化学性能进行了研究.结果表明:在pH值为11±0.05,NH3/M为2.25,反应温度为50℃,反应时间为12 h的工艺条件下共沉淀合成的正极材料具有良好的α-NaFeO2层状结构.以Zn片为负极,800℃煅烧15 h制备的正极材料为正极,pH值为9的LiNO3溶液为电解液组合成水系锂离子电池模拟体系,电流密度为5C时的循环性能相对较好.其首次充电比容量为288.9 mAh/g,放电效率为76.7%,20次循环后的充电比容量为26.3 mAh/g,放电效率为97.3%,其容量保持率为9%.  相似文献   

18.
目的制备离子电池正极材料LiNi_(0.5-x)Mn_(0.5-x)Zr_(2x)O_2微米球,并研究其电化学性能与掺杂Zr4+量的关系。方法以NiSO4·6H2O,MnSO4·H2O和Na2CO3等为原材料通过共沉淀的方法制备前驱物(Ni0.5Mn0.5)CO3,然后前驱物与ZrO2,Li2CO3混合均匀,在500℃下煅烧3h,900℃下煅烧16h得到正极材料LiNi_(0.5-x)Mn_(0.5-x)Zr_(2x)O_2。结果 X射线衍射分析证明得到的产物为纯相,扫描电子显微镜图像显示得到的产物具有3~5μm左右的微米球形结构,并对锂离子电池的电化学性能进行了研究。结论 LiNi0.5Mn0.5O2掺杂了Zr4+后能有效降低锂/镍混排度,而且可提高具有微米球结构的LiNi_(0.5-x)Mn_(0.5-x)Zr_(2x)O_2系列锂离子电池正极材料的电化学性能。  相似文献   

19.
橄榄石型磷酸铁锂(LiFePO4)正极材料因其成本低、环境友好、安全性高而被看好,并被作为高性能的锂离子电池正极材料广泛应用于商用电池。目前,LiFePO4/C二次电池以其良好的热稳定性、稳定的循环性能和较低的室温自放电率被广泛用于电子产品、汽车动力电池以及其他与场合相关的应用。然而,当基于磷酸铁锂的电池在寒冷气候下运行时,其应用受到严重限制。这一结果是由于Li+在电极内的传输能力大大降低,特别是导致电解质的电化学容量和功率性能急剧下降。因此,低温电解质的设计对于磷酸铁锂电池的进一步商业应用非常重要。本文回顾了导致磷酸铁锂电池低温性能不佳的关键因素以及低温电解质的研究进展。特别关注电解质成分,包括锂盐、助溶剂、添加剂和新电解质的开发。还分析了影响阳极的因素。最后,根据目前的研究进展,总结了一些观点,为提高未来低温下LiFePO4/C商业电池的实用性提供合适的改性方法和研究建议。  相似文献   

20.
开发了一种制备纳米复合Li_2SO_4质子传导电解质和膜电极组装(MEA)的工艺.与传统的丝网涂布工艺不同,新的制备工艺是将阳极、阴极催化剂与纳米复合电解质同时一次压制成MEA.这就使得MEA的设计具有某些结构上的特点,由于膜厚减少和电极与电解质之间的接触良好,可以降低电解质与电极之间的欧姆电阻,提高其机械和导电性能,增加膜的质子传导性以及改善电池的性能.用电子扫描电镜(SEM)和电化学阻抗分析技术对电解质薄膜进行了表征,结果表明,纳米复合材料改善了MEA的总体性能.由于膜的致密性和不透气性,不会发生气体穿透过膜的现象.MEA在H_2S环境中很稳定.电池结构为H_2S,(MoS_2/NiS Ag 电解质量 淀粉) /Li_2SO_4 Al_2O_3/(NiO Ag 电解质量 淀粉),空气、MEA厚为0.8mm、电解质组成为65% Li_2SO_4 35% Al_2O_3的单电池在680℃时产生最大功率密度为130mW/cm~2,相应的电流密度为200mW/cm~2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号