首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用4种化学试剂(HNO3溶液、NH3溶液、H2O2溶液与Fe(NO3)3溶液)对商业活性炭进行化学氧化改性。在含5%氧气和95%氮气的混合气体中,对改性活性炭进行热复合氧化改性。采用热重分析仪、孔隙分析仪、傅里叶红外分析(FTIR)与Boehm滴定对活性炭结构与表面基团进行测试,并利用改性活性炭对甲苯进行等温吸附实验。研究结果表明:强氧化剂预处理活性炭有助于热复合氧化改性中活性炭微孔孔容的增大;活性炭表面含氧基团由化学氧化改性和热复合氧化改性共同作用产生,热改性温度较低时,其主要由化学氧化改性生成,温度较高时,酸性基团主要来源于氧气与活性炭表面的氧化反应;酸性基团的存在能够促进活性炭吸附甲苯;控制合理的热复合氧化改性条件,既可以增加活性炭表面酸性基团,又可扩充微孔孔容,从而综合提升活性炭对甲苯的吸附能力。  相似文献   

2.
采用微波高温烧结炉分别在600℃,700℃和800℃下对商业活性炭进行改性,利用比表面积及孔径分析仪、Boehm滴定、傅立叶变换红外光谱比较分析活性炭的比表面积和孔结构、表面官能团等物化性质.以1,2-二氯乙烷为吸附质进行固定床吸附实验.研究表明:改性后活性炭表面酸性基团减少,碱性基团随温度升高增多;比表面积、孔容减小,微孔比表面积增加;活性炭对1,2-二氯乙烷的吸附量排序为:AC-800AC-700AC-600AC-0;灰色关联度分析结果表明:改性活性炭的物理结构特性对吸附量的影响大于表面基团;D-R模型和动力学模型拟合结果都表明活性炭对1,2-二氯乙烷的吸附主要为物理吸附.  相似文献   

3.
为研究不同的改性条件对蔗渣活性炭吸附苯酚性能的影响,制备出H3PO4活化的蔗渣活性炭,分别用稀硝酸改性法、热氧化改性法、微波改性法对蔗渣活性炭进行改性,通过红外表征、BET比表面积分析、Boehm滴定、吸附试验对结果进行分析。分析结果表明:蔗渣活性炭经稀硝酸改性后,增加了蔗渣活性炭表面酸性含氧极性基团的数量,对苯酚的吸附减少。微波处理使蔗渣活性炭比表面积变化不大,孔容稍有缩小,酸性基团减弱,碱性基团增强。在同等吸附条件下,微波改性蔗渣活性炭去除苯酚的效果最佳,其次是热氧化改性蔗渣活性炭。通过拟合表明,苯酚在新型蔗渣活性炭上的吸附符合Freundlich吸附。  相似文献   

4.
对商业活性炭分别经过600,700和800℃微波辐照加热处理,以及Na OH,Na2CO3和Na HCO3溶液浸渍处理。采用比表面积及孔径分析仪、Boehm滴定、傅里叶转换红外光谱(FTIR)对活性炭的物化性质进行表征,并且在10℃以丙酮为吸附质进行固定床吸附实验。研究结果表明:微波改性后,活性炭的比表面积、总孔容小幅度减小,但微孔比表面积显著增大;随着温度升高,表面酸性基团大量分解,碱性基团逐渐形成;碱性溶液改性后,比表面积和孔容均减小;改性溶液碱性越强,表面碱性基团总量越大,酸性基团完全被去除;丙酮吸附量与活性炭微孔孔容具有良好的线性相关性,吸附量与活性炭表面碱性基团的含量成反比;Langmuir方程和Freundlich方程均能较好地描述丙酮在活性炭上的吸附,Langmuir方程更加适合;吸附能与活性炭表面含氮官能团总量成正比。  相似文献   

5.
曹昊  唐悦  唐艳萍  田娟 《江西科学》2022,40(4):670-673
以椰壳活性炭对氨氮的吸附为研究对象,分别采用不同浓度氢氧化钠溶液对活性炭进行改性,并对改性炭进行表面特征分析,进而选出吸附性能较好的炭,进行等温吸附和吸附动力学的实验研究。研究结果表明:1 mol/L氢氧化钠改性的椰壳活性炭吸附氨氮的效果最好,比表面积最大,为646.039 8 m2/g,微孔体积和吸附平均孔径最小。温度对于改性活性炭吸附氨氮的影响较大,且温度在35℃时活性炭的吸附效果最好,最大吸附量为2.464 9 mg/g;另外,准二级动力学方程能够很好地拟合改性活性炭对氨氮的吸附动力学过程。  相似文献   

6.
煤层气中CH_4/N_2的吸附分离是变压吸附分离领域的难题之一,高性能吸附剂的制备是解决这一问题的关键。以玉米芯为原料,KOH为活化剂,采用一步炭化法制备得到玉米芯活性炭,并探究活化温度对活性炭孔结构、表面性质及CH_4/N_2吸附分离性能的影响。采用FTIR,SEM,XPS,N_2吸附-脱附等方法对活性炭的元素组成、孔结构和表面性质进行表征,并采用Freundlich等温式对25℃下活性炭的CH_4和N_2吸附等温线进行拟合。结果表明,随着活化温度的升高,活性炭比表面积、微孔比表面积和微孔孔容均增加,而表面含氧官能团的含量有所下降。在25℃,100 kPa条件下,活性炭对CH_4和N_2的吸附量与0.47~0.90 nm的微孔孔容有关;而CH_4/N_2平衡分离比与V_(0.47~0.55 nm)/V_(0.47~0.90 nm)和表面含氧官能团的含量有关。活性炭AC-T700具有最高的CH_4吸附量(35.3 cm~3/g),同时CH_4/N_2平衡分离比达到3.5.  相似文献   

7.
为探讨改性活性炭吸附有机气体性能的影响,商业活性炭分别经过1 mol/L的硝酸、盐酸、硫酸,600,700和800℃处理.通过Boehm滴定、傅式转换红外光谱(FTIR)、比表面积分析仪对活性炭样品的物化性质进行测试.以二氯乙烷为吸附质进行吸附实验研究,结果表明:酸改性样品的表面酸性官能团数量增加,热改性样品的表面碱性官能团数量增加;热改性比酸改性更有效的优化活性炭的孔结构;增大活性炭的理论有效孔容是提高二氯乙烷吸附量的有效途径,表面官能团的增加可以促进活性炭对二氯乙烷的吸附作用.  相似文献   

8.
通过Fe(NO_3)_3处理改变活性炭毡的结构和性质得到若干改性活性炭毡,采用氮气吸附法、傅里叶红外光谱法、Boehm滴定法、热重分析法表征吸附剂内在结构特征及表面官能团。以苯酚为吸附质,调变吸附时间、浓度研究吸附剂的苯酚吸附行为,并分别采用Langmuir、Freundlich和Temkin模型拟合和比较。研究表明,Fe(NO_3)_3处理降低活性炭毡的热稳定性。Fe(NO_3)_3处理降低活性炭毡的比表面积和孔容,但Fe(NO_3)_3处理前后活性炭毡的微孔孔容和比表面积仍显著大于活性炭。同时增加了大量表面酸性含氧官能团(主要为羧基)。处理前后的活性炭毡和活性炭的吸附过程均包括快速吸附、慢速吸附和吸附平衡阶段;活性炭毡系列样品吸附速率、吸附量均分别高于活性炭。活性炭毡平衡吸附量随Fe(NO_3)_3负载量增大而减少,是由于活性炭毡结构和/或表面含氧官能团单独或共同影响所致。活性炭毡表面含氧官能团抑制了吸附。苯酚吸附过程满足Langmuir方程。  相似文献   

9.
核桃壳真空化学活化制备活性炭   总被引:2,自引:0,他引:2  
采用真空化学活化法,以核桃壳为原料,氯化锌为活化剂制备活性炭,探讨体系压力、活化温度、浸渍比对活性炭比表面积、孔径分布、碘值和亚甲基蓝值以及表面性质的影响。研究结果表明,30 kPa时制备的活性炭其比表面积和总孔体积比常压条件时分别提高了27%和25%;在低压条件下有利于微孔的形成,在高浸渍比的条件下有利于中孔的形成。在体系压力为30 kPa,活化温度为450℃,浸渍比为2.0时,所得活性炭的BET比表面积为1 800 m2/g,总孔体积为1.176 cm3/g,等电点为9.15,碘吸附量为1 050 mg/g,亚甲基蓝吸附量为315 mg/g。  相似文献   

10.
周颖 《石河子科技》2015,(3):38-40,43
选用新疆独山子地区石化厂石油焦作为原材料,用KOH作为活化剂,采用化学活化法制备超级活性炭。制取过程中分别列举了碱炭比值、活化作用时间、活化维持温度等工艺参数对活性炭碘吸附值的影响;利用液氮吸附法对活性炭的比表面积、孔容孔径分布进行了表征。结果表明:在制备超级活性炭的过程中,碱炭比、活化温度和活化时间等条件起到关键作用,当碱炭比为4,活化温度为800℃时,活化时间为1.5h时,可以制得比表面积为2 411m2/g,孔容为1.11cm3/g,碘吸附值为2 536mg/g的石油焦基活性炭。  相似文献   

11.
大麻杆活性炭对染料吸附性能的研究   总被引:4,自引:0,他引:4  
以天然大麻杆为原料,采用磷酸活化法制备大麻杆活性炭。利用低温氮吸附对样品的比表面积与孔结构进行了表征,并利用亚甲基蓝与甲基橙两种染料对活性炭在液相中的吸附行为进行了研究。结果表明,样品的比表面积与中孔孔容随着活化温度的升高而增大,在500℃时达到最大值1325.73m2/g,随后由于磷酸过度活化导致结构坍塌致使各参数有所降低;在25℃下,大麻杆活性炭对亚甲基蓝与甲基橙的吸附等温线均遵循Langmu ir方程,单层吸附量分别达到471.698mg/g和363.64mg/g,吸附量主要受微孔孔容、染料分子尺寸及染料分子与活性炭表面作用力三者的共同影响。吸附动力学能够很好的符合准二级动力学方程,且亚甲基蓝的吸附速率高于甲基橙。  相似文献   

12.
通过对活性炭纤维(ACF)进行热处理和氧化改性得到具有不同比表面积、孔结构以及含氧官能团的ACF样品,并对这一系列样品进行甲醛吸附研究。实验结果表明,沥青基活性炭纤维(P-ACF) OG-5A具有最小的比表面积和孔容,具有最大的甲醛穿透容量。通过回归分析表明,ACF样品的甲醛穿透容量主要由孔径为0.9~1.8 nm的孔的比表面积和孔容来决定,而不是取决于总比表面积和总孔容。P-ACF OG-7A的氧化改性显著提高了样品的甲醛吸附能力,其中浓HNO_3改性后提升效果最为明显,改性后穿透容量为58.21 mg/g,是未改性样品穿透容量的2.5倍。氧化改性ACF表面含氧量的增加使得甲醛吸附能力增强,进一步通过Boehm滴定实验和回归分析表明酸性含氧官能团(酚羟基、内酯基、羧基等)数量的增加是ACF样品甲醛吸附能力提升的主要原因。酸性含氧官能团富含C=O、C-OH等亲水基团,对甲醛的吸附十分有利。  相似文献   

13.
为研究构造煤孔隙微观结构及其对瓦斯吸附的影响,采用压汞实验及PCT高压吸附实验,针对澄合矿区典型构造煤煤样进行孔隙结构分析及吸附特性测定,通过实验数据计算煤样孔隙体积及表面分形维数,分析构造煤微观孔隙结构对瓦斯吸附特性及吸附常数a、b值的影响。研究结果表明:煤样总孔容以大孔贡献为主,总比表面积微孔占比最高,各煤样间大、中、小及微孔占比基本相近,煤样坚固性系数与其总孔容成反比;吸附常数a与煤样微孔孔容、比表面积呈正相关关系,吸附常数b随着煤样大孔孔容占比、微孔占比的增大而增加;随着总比表面积增加,单位质量煤瓦斯吸附量逐渐增加,即微孔比表面积越大,瓦斯吸附能力越强;煤样孔隙体积及表面分形维数均可分为两部分,大、中孔隙分形维数在2~3之间,该段分形特征较为明显且孔隙结构复杂,孔隙体积分形维数与吸附常数a呈正相关关系。  相似文献   

14.
磷酸活化汉麻布活性炭纤维的孔结构   总被引:3,自引:0,他引:3  
以汉麻布为原料,采用磷酸活化法制备了汉麻布活性炭纤维,并利用低温氮气吸附和密度泛函理论(DFT)对样品的孔结构进行了分析。结果表明,随着活化温度的升高,磷酸活化的汉麻布活性炭纤维的BET比表面积和总孔容都呈现先增大后减小的变化趋势。不同方法计算得到的样品比表面积值呈相同的变化规律。样品的孔分布集中在2 nm以下的微孔范围内,既有极微孔又有超微孔,只有少量中孔,基本没有大孔。所有样品的孔径在微孔范围内都呈现多峰分布,孔径≤1 nm和1~2 nm的范围内分别都出现了2个峰值孔径。微孔孔容基本上随活化温度的升高而增加,而中孔孔容的数值则整体上变化不大。样品表面能量分布较宽,并呈现有多个不连续峰值的多峰分布,宽的孔径分布导致宽的表面能量分布和较多的能量峰值,并使吸附位的种类也随之增多。  相似文献   

15.
表面含氧官能团对活性炭电化学性能的影响   总被引:1,自引:0,他引:1  
采用浓硝酸对椰壳活性炭和各壳活性炭进行液相氧化改性后,制成了以KOH为电解液的超级电容器的炭电极,研究表面含氧官能团在碱性电解液中对电容器电极的电化学性能的影响.运用低温N2吸附、XPS和FTIR表征活性炭孔结构和表面性质.研究结果表明,氧化后活性炭的比表面积和孔容降低,表面含氧量增大.且经硝酸氧化后炭表面的含氧官能团含量发生了变化,即在内酯基的含量减少的同时,羟基、羰基和菝基的含量增加,其中羟基含量的增幅最大.在50mA/g电流密度下经过100次充放电循环,氧化后的椰壳活性炭和杏壳活性炭质量比电容分别达到193 F/g和150F/g,均比氧化前提高了30%以上.由XPS的分析结果判断,羟基对电极比电容提高的贡献最大.同时,在大电流充放电时,氧化后炭电极的比电容的衰减率明显低于氧化前.  相似文献   

16.
通过正交实验和单因素实验探讨了以椰壳渣为原料、KOH为活化剂制备高比表面积活性炭的最佳工艺条件.考查了炭化温度、活化温度、活化时间、活化剂料比等因素对实验结果的影响.在炭化温度为600℃、碱炭质量比为2∶1、活化温度为900℃、活化时间为90 m in条件下,制备出以微孔为主、比表面积达2 180 m2.g-1、总孔容为1.19 mL.g-1的高比表面积活性炭.  相似文献   

17.
氯化锌活化大麻布活性炭纤维的孔结构   总被引:1,自引:0,他引:1  
以大麻布为原料,氯化锌为活化剂,在不同活化温度下制备大麻布活性炭纤维样品。采用低温氮气吸附和密度函数理论(DFT)等对样品的孔结构和表面能量分布等表面织构特征进行了研究。结果表明,样品BET比表面积随活化温度的升高呈现先增大后减小的变化趋势,800℃时达到最大值915 m2/g;样品是典型的微孔材料,孔分布集中于2 nm以下的微孔范围内,只有极少部分的中孔,基本没有大孔;样品的表面能量分布较宽,为不均匀性表面;随活化温度的升高,样品碘吸附量呈先增大后减小的变化趋势,与微孔孔容、总孔容以及由BET比表面积的变化趋势一致。  相似文献   

18.
中等比表面积高容量活性炭电极材料制备和表征   总被引:2,自引:0,他引:2  
以天然高分子椰壳为原料,采用ZnCl2,预活化和CO2/水蒸气活化的二次活化法制备活性炭.用氮气吸附和傅里叶红外表征活性炭材料的比表面积,孔结构以及表面化学性质.结果显示,所制备的活性炭比表面积和孔径可调,中孔率为16.3%~36.9%.经首步活化的中间炭具有丰富的微孔和表面官能团,并随着第二步活化时间的增加逐渐分解,同时伴随着炭烧失率增加,导致比表面积、孔容和孔径的增大.以制备的活性炭作为电极材料,6 mol·L-1 KOH电解液构成模拟电容器.采用恒流充放电、循环伏安、交流阻抗等方法研究了其电化学性能.结果显示,含氧官能团增加了活性炭表面的润湿性,并对比电容的增加有较大的贡献;而炭材料的比表面积增加对比电容有负面影响.中等比表面积968 m2·g-1样品的比电容达到278 F·g-1,面积比电容高达29μF·cm-2.  相似文献   

19.
本研究采用浸渍法制备了良好抗菌性能的载铜活性炭。通过单因素Plackett -Burman ( PB)设计和Box-Behnken Design ( BBD)中心组合设计法,考察各工艺条件对所制备的载铜活性炭抗菌率的影响,确定制备载铜活性炭的最佳工艺条件为活化时间2h,氯化铜浓度为0.07 mol· L-1,浸渍时间2h,活化温度700℃,浸渍比3时,抗菌率达100%。另外,采用傅立叶红外光谱仪、比表面积及孔径分析仪表征了活性炭的孔结构及表面官能团,通过傅立叶红外光谱仪分析得知其表面基团存在较多的含氧基团,通过孔径及表面积分析可知活性炭主要以微孔为主,也有不少数量的中孔存在。  相似文献   

20.
为提高膨润土对低浓度瓦斯的吸附性能,用质量分数3%的硫酸溶液和正二十四烷通过化学浸渍法对膨润土原土进行改性实验。对硫酸改性膨润土、正二十四烷改性膨润土、膨润土原土进行N2的吸附、比表面积、孔容和孔径测试。通过改性前后数据对比可知,改性后膨润土的吸附量、比表面积、孔容相应的增大,且硫酸改性膨润土的性能优于正二十四烷改性膨润土。改性后膨润土对CH4的最大吸附量为5.36 mmol/g,比改性前增加了3.72 mmol/g,增量明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号