首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对横风下高速列车在洞口交会时的非定常气动问题,考虑流场的三维、可压缩、湍流特性,建立隧道-列车三维空气动力学模型,利用滑移网格技术模拟列车交会过程,采用SSTκ-ω湍流模型对列车交会全过程进行求解,研究横风对隧道内瞬变压力、列车风及流场分布特性的影响规律.研究结果表明:横风下列车交会时,洞口处气动压力系数变化幅值显著增大,交会完成时,列车之间压力系数峰-峰值较无横风情形增大30.6%;列车交会开始和完成时气动压力均发生突变,隧道中部附近气动压力峰值最大;横风下列车交会气动压力大小与空间位置有关,交会时列车间气动压力变化幅值分别是列车迎、背风侧压力变化幅值的2.2和1.5倍;横风对洞口附近列车风影响显著,横风时迎风侧列车风峰值最大,无横风时背风侧列车风峰值最大,且前者是后者的2.04倍;隧道内气动效应受横风影响范围有限,当横风为30 m/s、车速为350 km/h时,隧道内气动效应受影响范围为120 m;横风下交会开始与完成时,流场分布急剧变化,导致气动压力与列车风发生突变.  相似文献   

2.
为研究桥上动车组穿越复杂峡谷地形时的横风气动特性,本文以CRH6型动车组为研究对象,基于三维、粘性、不可压缩的N-S方程和k-ε湍流模型,采用滑移网格技术,耦合高架桥、横风和车速,计算复杂三维峡谷地形下动车组的气动载荷.研究结果表明:列车表面压力在流线型头部有显著变化,压力最大值出现在列车头部鼻端点区域;随着车速和横风...  相似文献   

3.
对高速列车由横风环境驶入隧道过程中流场的非定常、可压缩以及湍流等特性,建立了隧道-列车-空气三维CFD数值模型,分析了列车驶入隧道时各节车厢的气动荷载瞬态变化特征及对应的车厢运行姿态变化,并从流场角度揭示了其变化机理,最后探讨了气动荷载对车厢的冲击效应.主要结论如下:(1)当列车由横风环境驶入隧道时,各节车厢的5项气动荷载均表现出显著的突变特征,相应地各节车厢均会呈现瞬间偏转以及瞬间"点头"等行为;(2)车厢两侧压差在纵向上的巨大差异是导致车厢横向力和倾覆力矩的突然卸载以及偏航力矩骤增的根本原因;(3)横风是导致气动荷载对车厢冲击强度显著升高的主要因素;(4)头车的安全系数是控制整列车运行安全性的关键.  相似文献   

4.
采用三维、可压、非定常N-S方程,用动网格技术实现列车与地面、环境风与列车之间的相对运动,对不同风速、风向环境风作用下,磁浮列车以430 km/h速度等速交会时列车横向气动性能进行数值分析。研究结果表明:当风向角为135°时,磁浮列车受到的交会压力波幅值最大;头车和尾车横向力在风向角分别为270°和225°时最大,分别为-172.5 kN和77.4 kN;头、尾车侧滚力矩均在风向角为90°时最大,分别为-226.7 kN·m和-203.7 kN·m;在90°风向角下,风速增大,列车受到的横向力和侧滚力矩增大,横向力近似与风速的0.8次方成正比,而侧滚力矩约与风速的1.3-1.5次方成正比。  相似文献   

5.
基于DES的车辆横风气动性能模拟   总被引:1,自引:0,他引:1  
采用分离涡模拟(DES)方法,就横风对车辆侧向气动性能的影响进行数值计算。结果表明:随着风向角的增大,车辆的气动力系数均单调增大,当风向角为90°时达到最大值;在小风向角的情况下,头车的气动力系数最大,尾车最小。对静止车辆来说,车体前端和尾端的流场结构具有较强的对称性,在车辆的头、尾部均会产生脱落涡,且向列车的中部发展,与从风挡处气流分离产生的脱落涡干涉、融合,形成复杂的湍流结构,而中间车则受头、尾车的影响较小,在背风侧产生规则的脱落涡;同时尾涡内流速较低。对运动车辆来说,气流会在头车前端背风侧的上、下部产生2个脱落涡,并沿着车长方向发展,上部的脱落涡和从风挡处产生的脱落涡融合叠加,而下部的脱落涡则不受风挡的影响,同时漩涡内速度较高。  相似文献   

6.
针对列车高速驶入隧道时流场的三维、非定常及可压缩湍流等特性,建立了精细化的隧道-列车-空气三维CFD数值模型,对比分析洞口有无横风条件下列车驶入隧道过程中车体周边的瞬态流场结构、压力分布,并研究横风条件下车体的5项气动荷载(气动横向力、气动升力、倾覆力矩、偏航力矩和点头力矩)指标的瞬变特性以及风速和车速变化对其最大瞬变幅值的影响情况.研究结果表明:当列车在横风环境下驶入隧道,洞外部分车体两侧流场结构和压力分布差异显著,而洞内部分差异较小,从而引发列车进洞前后车体压差突变;列车在进洞过程中,车体的各项气动荷载均存在瞬变效应,且尾车同时呈现出倾覆、"上跳"、"蛇形"摆动以及"点头"等行为;风速变化对尾车偏航力矩变化幅值影响较显著,而车速变化对头车偏航力矩变化幅值影响较显著.  相似文献   

7.
使用计算流体力学方法研究横风条件下列车在高架桥上运行的气动特性和倾覆的危险性。基于三维N-S方程,采用滑移网格技术对列车运行进行数值模拟,并与在地面上运行作对比数值模拟计算。研究结果表明列车在高架桥上运行所受到的气动力随着侧风强度的增加而剧烈增加,随着车速的增加而缓慢增加;和地面路况运行相比,列车在计算模型中的高架桥上运行并未增大倾覆危险性。  相似文献   

8.
长大编组高速列车横风气动特性研究   总被引:2,自引:0,他引:2  
采用定常RANS方法, 对长大编组高速列车的横风气动特性进行分析, 从流场特性和气动力特性两个方面开展研究。结果表明, 横风条件下, 列车表面流动现象非常丰富, 列车首尾流线型存在较多流动分离、再附等现象, 且受横风侧偏角影响较大。在列车背风侧出现两个以上的复杂分离涡系, 从列车头车下部开始, 向列车下游发展并逐渐远离列车车体。分离涡系是列车承受非定常气动力的根源。列车头车是侧向力、滚转力矩最严峻的车厢, 且随着横风侧偏角增大, 侧向力、滚转力矩逐渐增大, 列车行车环境逐渐恶化。  相似文献   

9.
采用动模型试验测试隧道表面和动车组车体表面测点的时程压力,验证雷诺平均方程应用于计算列车通过隧道空气动力学的有效性,结果表明数据误差满足精度要求.基于验证后的仿真算法,建立高速动车组在最不利长度隧道内交会的三维几何模型,计算高速动车组转向架的气动力,进而分析其变化规律.计算结果及分析表明:尾车转向架6的阻力最大,其阻力的最大值和幅值与速度的二次方成正比关系;头车转向架1和尾车转向架6的侧向力最大,其侧向力极值和幅值与速度的二次方成正比关系;头车转向架2的升力极值最大;当动车组低速交会时,各转向架的垂向力幅值差别不大,但当动车组运行速度超过250 km/h,转向架位置越靠前其垂向力幅值越大.  相似文献   

10.
采用分离涡方法模拟恒定风场中高速列车绕流的非定常流动,在时域和频域内分析车辆气动特性的瞬态性质。结果表明:在恒定来流中,列车的背风侧和尾车的尾迹区存在着强度不同、空间几何尺度各异并随时间随机变化和脉动的分离涡;各节车辆的非定常气动荷载的时均值与按整场定常流动计算得到的结果基本一致,但瞬态荷载峰值却比时均值高出较多;振幅频谱和功率谱密度的最大峰值所对应的频率不尽相同,但都集中在0~4 Hz内,处于某些列车部件的固有频率范围内。头车的横向力和倾覆力矩的分布频率范围较大,与车体自身频率耦合的范围较宽,横风气动安全性较差。  相似文献   

11.
基于横风作用下高速列车流场的非定常特性,建立了横风-列车-桥隧模型进行仿真计算,并通过1∶8列车动模型试验验证数值方法的准确性。随后研究横风条件下列车突出隧道时,隧道内外瞬态气动压力、气动荷载变化及流场特性,揭示了横风-列车-隧道之间的相互作用机理。研究结果表明:随着横风风速的增大,压力逐渐减小,但压力随时间的变化规律相似;横风对隧道出口处及隧道外监测点处的压力梯度有明显的影响,对于隧道内的监测点几乎没有影响;随着横风风速增大,隧道外背风侧正压峰值随风速增大略有减小,迎风侧正压峰值基本保持不变,背风侧负压峰值减小速率大于迎风侧;横风对列车突出隧道运行过程的压力波动影响有限,在横风风速为20 m/s时,隧道外界流场影响隧道内气动压力的范围不超过20 m。同种横风条件下,迎风侧、背风侧监测点处压力时程变化规律不相同,压力梯度峰值出现的位置也不同,且位于列车同侧越靠近地面的监测点处压力峰值及压力梯度峰值绝对值越大;横风下,气流经过车-桥系统时,在桥底部、列车背风侧顶部及底部发生明显的流动分离现象,导致隧道外车体两侧的压差大于隧道内车体两侧压差。  相似文献   

12.
200 km/h动车组交会空气压力波试验   总被引:1,自引:1,他引:1  
为确定我国200 km/h动车组与准高速列车交会空气压力波的大小,从而为动车组安全评估提供依据,在广深线上利用瞬态压力测试系统,对其列车交会空气压力波性能进行测试,并对测量结果进行综合分析.研究结果表明在线间距为4 m、动车组运行速度为200 km/h(准高速列车速度为160 km/h)时,准高速列车所受到的压力波幅值为1*!568 Pa,而动车组承受的压力波幅值在1*!400 Pa左右;列车头部外形对列车交会压力波幅值有较大影响,控制车外形流线化程度比动力车的流线化程度好,控制车对准高速车造成的压力冲击波幅值小于动力车造成的压力冲击波幅值;对于目前使用的准高速车辆,动车组以200 km/h的速度与之交会运行是安全的.  相似文献   

13.
采用一维设计与三维数值模拟分析相结合的方法,对某动车组轴流冷却风机进行气动设计,并分析研究了等环量指数对轴流冷却风机气动性能的影响.根据一维设计的几何参数进行三维建模;再利用NUMECA软件对所设计风机进行深入数值模拟分析及结构优化改进;最后,选取最优方案加工样机并进行性能试验.试验结果表明:该轴流冷却风机的整体气动性能较优,与原设计相比有较大改善,特别是效率提高了近3%,叶轮进、出口流场较原机叶轮也更加稳定.该国产化风机与同类型某进口风机相比性能更优.  相似文献   

14.
采用三维、可压N-S方程、k-?双方程湍流模型和滑移网格技术,对不同的流线型长度、头部型线列车明线交会压力波及气动力的关系进行计算分析。研究结果表明:交会压力波头波幅值数值计算结果与实车试验结果较吻合,两者相对误差为4.9%;当列车流线型长度从8 m增大至12 m时,交会压力波、侧向力、侧滚力矩幅值分别减小27.0%,39.2%和36.2%;头部主型线中,水平剖面型线对交会气动性能的影响最大,当水平剖面型线斜率由0.076增大到0.184时,交会压力波、侧向力、侧滚力矩幅值分别增大12.1%,7.3%和8.5%;纵剖面型线对列车交会气动性能的影响较小,当斜率从0.505增大到0.713时,交会压力波、侧向力和侧滚力矩幅值分别增大1.90%,0.65%和0.89%;当横截面型线斜率从0.194增大到0.235时,交会压力波、侧向力和侧滚力矩幅值分别增大4.1%,3.1%和4.0%。  相似文献   

15.
基于空气动力学理论,建立高速列车空气动力学模型,计算不同运行速度下高速列车在明线运行和明线横风场景下的气动力荷载。同时采用多体系统动力学理论,建立车辆多体动力学仿真模型。将气动荷载导入车辆仿真模型,计算在无横风和有横风条件下,列车以不同速度行驶时的车辆动力学响应及其安全性指标。获得在无横风和有横风条件下高速列车运行安全性随速度的变化规律。研究结果表明,横风作用将对列车的安全运行构成极大的威胁。参照有关高速列车运行安全性评定标准,给出15 m/s横风风速下高速列车安全运行的速度限值。  相似文献   

16.
采用基于CFD和CSD的准静态耦合方法对横风作用下货车篷布结构强度进行分析。首先建立横风作用下货车篷布数值模拟计算模型,得到不同运行工况下货车篷布表面压力分布;随后建立篷布索膜结构强度计算模型,以篷布表面压力分布为加载载荷,运用非线性有限元分析方法对不同运行工况下的篷布强度进行数值模拟计算。研究结果表明:货车以速度120 km/h在大风地区运行,当横风风速小于41.4 m/s时,采用双层焊接结构的无网篷布所受最大主应力小于篷布许用应力;当横风风速小于54 m/s时,采用双层焊接结构的有防风网篷布所受最大主应力小于篷布许用应力,满足篷布安全运行要求;篷布顶面和篷布网眼位置的最大位移和最大主应力随着货车运行速度和横风风速的增加而增大,横风风速对篷布最大位移和最大主应力的影响大于货车速度对其的影响。  相似文献   

17.
本文以风沙环境下高速动车组为研究对象,对动车组110万公里运行服役期内各车转向架轮盘、轴盘磨耗量进行了检测和数据分析.研究发现:当动车组运行至106.52万公里时,轮盘、轴盘内外侧单边最大磨耗量分别为0.616 mm与0.643 mm,各车转向架轮盘平均磨耗动车2车、6车偏大,中间拖车4车、5车偏小,而各车轴盘磨耗差异不大;由磨耗测试期内的风沙天数统计分析发现,当相邻两次测量期全为风沙天时,风沙服役环境对各车轮盘/轴盘当量磨耗率的贡献占为8.2%~10.4%,各车轮盘、轴盘的平均当量磨耗率均在每万公里0.004 mm以上,高于非风沙地区每万公里0.003 5 mm的动车组制动盘磨耗率.  相似文献   

18.
建立有效防风设施是保障桥上高速列车横风安全性的重要措施,为探索一种新型桥上曲线式挡风墙的防风效果,本文采用基于Realizable k-ε方程湍流模型的数值模拟方法,研究了具有不同高度(H)和不同弯曲程度(α)的曲线式挡风墙对高速列车横风气动特性的影响规律,结果表明:当设置α≈1/3、 H=2 m的矮挡风墙,或设置弯曲程度0α2/3、 H=5.5 m的高挡风墙时,列车受到的倾覆力矩最小,横风稳定性最佳,并得到了具有最佳防风效果的曲线式挡风墙H-α匹配曲线,为高架桥上防风设施的设计提供了理论依据.  相似文献   

19.
基于由3节车组成的CRH3和CRH-380型高速列车模型,在不同速度条件下,研究车轮旋转对高速列车及各部分气动阻力和升力的影响,以及车厢间风挡形式对各车厢和车厢连接处气动性能的影响。结果表明,车轮旋转的诱导效应对高速列车模型的全车及各部分气动阻力影响较小,对尾车、各转向架气动升力的影响较大。车厢间风挡形式对车厢的压差阻力和粘性阻力影响不大。相比于侧风挡,上下风挡对升力影响更大。建立适用于高速列车的二维模型的雨载荷计算方法。在降雨和无雨条件下,模型所受横向力、升力和翻滚力矩均随横风风速的增大而增大。相比于无雨条件,降雨时模型所受的总横向力和翻滚力矩明显增大,且随降雨强度的增大相应增大。升力在降雨和无雨时变化不大,且随降雨强度的增大总升力略有下降。采用非定常数值模拟方法系统研究了复杂外形高速列车的底部流动特性,并针对列车转向架中的旋转结构对于底部流动特性的影响进行了对比分析。列车底部结构的气动阻力是整车气动阻力的重要组成,列车底部结构的气动载荷对于整车的气动载荷具有重要影响。轮对的旋转效应会对列车气动载荷的非定常特性产生很大影响。基于替代模拟技术和多目标遗传算法进行了高速列车头型多目标有约束气动外形优化设计的研究,首先采用增量叠加参数化方法对高速列车头型进行参数化设计,然后以列车气动阻力和尾车气动升力为优化目标,得到了Pareto最优解集。基于压力波的形成机理和初始压缩波的经验公式,建立了压力波的"波叠加"的解析分析方法。研究表明一维流动模型和波叠加法能够快速得出多参数下的压力波的平均特性和最不利隧道长度等。三维流动模型能够得到细致的压力波形成机理和列车外部压力的三维特征。波叠加法可作为校验数值方法的一种理论方法和快速进行大量不同列车与隧道参数的比较性研究工具。  相似文献   

20.
级环境下离心压气机扩压器叶片气动优化设计   总被引:3,自引:0,他引:3  
在级环境下采用人工神经网络和遗传算法在对设计工况下的离心压气机扩压器叶片型线进行了优化,并采用数值方法对优化前、后离心压气机级的气动性能进行了对比分析.结果表明:在设计工况下,优化后的叶片扩压器静压恢复系数提高了11.7%,总压损失系数减少了21.12%,离心压气机级绝热等熵效率提高1.64%,达到了86.01%;非设计工况下离心压气机的气动性能也有显著改善;优化后离心压气机级在设计转速下喘振裕度有所提高,阻塞裕度略有降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号