首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为研究翅片表面特性对空气源热泵结霜的影响,构建了翅片结霜实验平台,对接触角不同的4种翅片表面(亲水性铝翅片、普通铝翅片、疏水性铝翅片、超疏水性铝翅片)的结霜过程细微观特征进行了可视化研究,获得了翅片表面特性对结霜过程细微观物理特征及霜层热工特性的影响规律.结果表明,在霜晶生长初期,接触角越大,凝结形成的液滴粒径越小,分布越稀疏,液滴开始冻结的时间越滞后.霜层生长过程中,接触角大的表面霜晶相对矮小且疏松,枝晶分布不均匀,而接触角小的表面霜晶纤长且致密,枝晶多且分布均匀.随着接触角的增大,霜层的高度和导热系数减小,表面温度降低.超疏水性表面霜高比亲水性表面减少了45%,接触角越大的表面其抑霜效果越明显.  相似文献   

2.
为揭示超疏水翅片在不同环境湿度下的结霜特性及抑霜性能,制备了接触角为161.5°的超疏水翅片,并通过搭建翅片表面结霜实验平台,获取了环境相对湿度分别为65%、75%、85%和95%条件下,超疏水翅片的结霜特性及抑霜性能.实验结果表明:结霜初始阶段凝结液滴的生长行为受相对湿度影响,凝结液滴的冻结时间随着相对湿度的增加而减少,但湿度对液滴冻结前翅片表面覆盖率的影响并不明显;结霜时间为45 min时,几种环境相对湿度下的霜层高度分别为0.26, 0.42, 0.65, 0.93 mm,虽然超疏水翅片的霜层高度随着环境相对湿度的增加而增加,但与普通翅片相比,其在不同湿度条件下均能有效抑制结霜.  相似文献   

3.
制备了具有微纳复合结构的超疏水表面,对其结霜过程进行了可视化观测,揭示了结霜初期表面凝结液滴的自跳跃行为及其对结霜过程的影响,并与普通表面的结霜过程进行了对比研究.实验结果表明,结霜初期,超疏水表面的凝结液滴频繁出现合并后自跳跃现象,根据液滴合并前的尺寸大小,可将自跳跃行为分为3类,而普通表面未观察到类似现象;液滴自跳跃临界半径随着液固接触面积分数的降低和表面接触角的增大而减小.初始凝结液滴的自跳跃降低了超疏水表面液滴覆盖率和分布密度,同时引起表面霜层生长的不均匀性和霜晶结构的差异.与普通表面相比,超疏水表面可有效抑制结霜,延缓霜层生长速率.  相似文献   

4.
为了改善传统钢铁表面较差的抗结霜性能,对钢片表面先后进行高能微米喷丸处理和氟化处理,采用扫描电子显微镜、接触角测量仪和抗结霜试验设备研究了钢片表面形貌、浸润性和抗结霜性能的变化.结果表明,高能微米喷丸处理在钢片表面成功构建了微米一纳米复合结构,且喷丸尺寸越细小,得到的微观结构越细小均匀.喷丸一氟化复合处理后,钢片表面与水滴接触角可高达160.,滚动角小于2.,显示出超疏水性和低黏附性.低温结霜试验表明,制备的超疏水钢片在试验过程中只有少量的霜晶出现,而未经处理的钢片已形成霜层.分析认为超疏水钢表面与水滴间的热量交换较小,水滴不易凝结,从而有效地提高了抗结霜性.抗结霜性良好的超疏水钢有望在热交换器或低温运行设备等领域获得应用.  相似文献   

5.
为了研究结霜初期液滴在超疏水表面的生长规律,建立结霜初期超疏水表面液滴生长的分层模型,揭示液滴在生长过程中各层温差的分布特点,并深入研究表面接触角、面积分数、基底温度以及空气相对湿度对液滴生长的影响规律。研究结果表明:在结霜初期,液滴的Knudsen层以及主流连续区层这2部分的温差占基底过冷度的95%以上;随着表面接触角的增大,传质环节中的主流连续区层的温差减小,导致液滴生长减缓;面积分数S对液滴生长的影响较小,当S=0.04时,与其相关的热阻R_(we)仅约占液滴-翅片层总热阻的0.2%;液滴生长速率随着基底温度的降低和空气相对湿度的升高而升高。  相似文献   

6.
翅片管蒸发器表面结霜是阻碍制冷系统高效运行的主要不利因素之一。利用恒温恒湿箱搭建强制对流下蒸发器翅片管表面结霜可视化实验平台,在环境温度0~8℃、相对湿度55%~75%及迎面风速0.8~2.4 m/s时,实时记录霜层动态生长过程,研究了环境温度、相对湿度和迎面风速对霜层生长特性及蒸发器换热性能的影响规律。结果表明:环境温度和迎面风速是影响蒸发器结霜的主要因素,结霜50 min,环境温度为0℃的霜层厚度比环境温度为8℃的提高了12.78%,迎面风速为2.4 m/s的霜层厚度比迎面风速为0.8 m/s的提高了14.66%,结霜量与换热量提高趋势相同。在结霜初期,相对湿度越大,换热量越大;结霜后期,相对湿度越小,换热量越大,并得到了换热量关于环境参数与时间的相关关系。  相似文献   

7.
为了探索在-60℃以下较低温区冷表面的结霜特性,设计并搭建了基于复叠制冷系统的-60℃水平圆管表面结霜特性可视化实验台,并对套管形式换热器内水平圆管外表面上湿空气顺掠管的结霜特性进行了实验研究,着重分析了结霜过程中霜层厚度及其增长速率的特性。实验结果表明:-60℃水平圆管表面霜层厚度生长速率比常温区冷表面更快,约为-15℃冷表面的两倍,同时又保持了与-15℃以上冷表面相似的生长趋势,即前期生长速率较快,然后逐渐降低。此外,还发现并分析了呈周期性出现的融霜现象和大幅突降的霜层崩塌回融两种不同特征的融霜过程。初步探索了受限通道内-60℃水平圆管表面的结霜特性,丰富了霜层特性研究数据,可为今后更加全面系统的实验研究奠定基础。  相似文献   

8.
针对超疏水表面结霜过程中液滴冻结初期"冰桥"导致冻结行为传递的现象,建立液滴与冻结液滴之间的传质模型,揭示超疏水表面液滴冻结初期冻结行为传递的机制。探究冻结行为传递的条件,揭示表面润湿性及表面温度对"冰桥"形成的影响规律。研究结果表明:当液滴与冻结液滴之间的距离小于临界距离时,"冰桥"才可能形成;表面疏水性能越好,液滴分布越稀疏,"冰桥"形成速度越慢,冻结行为越难以传递;表面温度影响液滴表面与冻结液滴表面水蒸气分压力差,水蒸气分压力差越大,"冰桥"形成速度越快。  相似文献   

9.
使用扫描电子显微镜(SEM)、接触角测量仪和红外光谱仪(FT-IR),观测了27种蝴蝶翅表面的微观结构、复合浸润性和化学成分.利用Cassie方程建立了蝴蝶翅表面微/纳结构疏水模型,从生物耦合角度探讨了疏水机理.结果表明,蝴蝶翅表面由天然疏水材料组成,具有复杂的多级微/纳结构,包括一级结构(微米级鳞片)、二级结构(纳米级纵肋和横桥)和三级结构(纳米级突起).翅表面具有高疏水性(接触角138°~157°)和低黏附性(滚动角1°~3°).翅表面微观形貌和自清洁性具有显著的各向异性.这种特殊的复合浸润性是材料耦元与结构耦元耦合作用的结果.微米级鳞片的宽度越小、间距越大,纳米级纵肋的高度越小、宽度越小、间距越大,翅表面疏水性越强.研究结果有助于进一步流调结果揭示生物表面的疏水机理,为智能界面材料的仿生设计和制备提供启示.  相似文献   

10.
板翅式换热器热通道结霜过程的数值模拟   总被引:1,自引:0,他引:1  
为了研究板翅式换热器热通道在不同工况下的霜层生长规律以及霜层对板翅式换热器的影响,建立了基于Lewis传热传质类比理论的结霜模型,并将该模型与板翅式换热器非稳态传热模型相结合。首先借助平板结霜可视化观测实验台验证了该模型的准确性,然后主要计算对比了湿空气进口流速分别为0.8、1.2、2 m/s,相对湿度分别为60%、70%、80%时换热器热通道结霜量的大小,以及结霜起点位置的变化。结果表明:空气流速越大,霜层增长的速率越大,结霜区域越小;空气相对湿度越大,霜层增长的速率越大,结霜区域越大。并且,随着霜层厚度增长通道压降持续增大,板翅式换热效率持续下降,当热通道内霜层平均厚度累积到1.5 mm时换热器效率下降约10%。  相似文献   

11.
对冷表面霜层生长过程进行了微观可视化研究,对结霜生长过程不同时期的霜晶演化特征进行了观测,同时从相变动力学的角度对冷表面霜层初始液滴成核过程进行了理论分析.试验研究发现,冷表面霜层生长阶段不同位置霜晶呈现不均匀生长,局部存在霜枝倒伏以及霜晶消融现象,且随着时间的推移,冷表面不同位置霜晶逐渐趋于均匀.研究结果表明,冷表面温度越低,湿空气中水蒸气过饱和度越大,相变驱动力越大,发生气液相变形成活化液核的可能性越大.霜晶体表面温度以及局部水蒸气分压力的联合效应是发生霜晶消融的根本原因.  相似文献   

12.
为了研究气体在疏水性表面的吸附及其对接触角的影响,采用分子动力学方法研究了溶解在水中的气体在石墨表面的吸附现象,同时对水膜在吸附有不同数量气体分子的石墨表面上凝聚成小液滴的行为进行了研究。结果表明,溶解在水中的气体会在疏水性表面吸附,气体吸附会使小液滴的接触角变大,当吸附厚度大于约两个气体层厚时,接触角不再发生变化。  相似文献   

13.
采用伪势格子玻尔兹曼方法 (LBM)多相流模型对均质表面上液滴脱落临界直径与壁面润湿性的关系以及非均质表面上液滴聚合脱落现象进行了研究,分析了液滴尺寸、壁面润湿性的差异、液滴半径比对非均质表面液滴聚合脱落的影响。结果表明:非均质表面在一定程度上可以诱导相应尺寸大小的液滴聚合并脱落,可通过增大中间区域的接触角来扩大非均质表面诱导聚合脱落液滴的尺寸范围;非均质表面接触角差值越大,液滴聚合速度越快,同时液滴在壁面上的铺展能力越强,液滴纵向振荡幅度越小;在一定范围内,液滴半径比越大,两液滴的内部压力差越大,融合速度越快,液滴可获得额外的动能并从壁面上脱落。  相似文献   

14.
环境参数对空气源热泵蒸发器表面霜层影响研究   总被引:1,自引:0,他引:1  
对一台空气源热泵翅片管蒸发器表面结霜特性进行了实验研究,分析了室外环境温度和相对湿度对霜层的形态、平均密度、总平均密度及动态密度的影响.实验结果表明:室外环境温度的降低或相对湿度的增加将促使换热器表面霜层在生长过程中形成针状霜晶,乃至形成绒状霜层;在高温、高湿度工况下,霜层表面出现凝结水滴,使得霜层密度增大.在霜层减速生长段,霜层平均密度随结霜时间呈增大趋势,而在霜层加速生长段,霜层平均密度随结霜时间迅速减小,且动态霜层密度远远小于霜层平均密度.对环境参数不同而霜层厚度相同的霜层平均密度进行比较发现,其随环境温度的升高及相对湿度的减小而增大,且相对湿度的影响在低湿度工况下更为显著.  相似文献   

15.
为了深入分析制冷空调系统运行性能和合理确定融霜周期,需要研究蒸发器表面的结霜过程和霜层厚度的变化过程.根据传热传质过程基本理论和相关的经验公式,建立了蒸发器外表面水蒸汽传质及霜层生长过程数学模型,对某类翅片管式蒸发器外表面结霜过程及霜层厚度变化过程进行了数值模拟,并分析了外界参数变化对结霜厚度的影响.  相似文献   

16.
冷表面结霜的微细观可视化研究   总被引:14,自引:2,他引:14  
为研究冷表面上结霜的微细观过程以及表面湿润性对该过程的影响,对空气中水蒸气在铜裸面及疏水性涂层上的结霜过程进行了微细观可视化研究。实验中冷面温度为-10℃。发现结霜过程并非单纯的凝华过程,而是经历了水珠生成、长大、冻结、初始霜晶生成以及霜晶成长(包括部分霜晶的倒伏)过程。与铜裸面相比,疏水面上水珠分布的较为稀疏,粒径较大,冻结较晚,初始霜晶较迟出现,霜晶高度较低。所有这些都说明疏水性表面可以延缓霜的形成及成长。  相似文献   

17.
李健  费潇  王腊梅  赵珂  金卫凤 《科学技术与工程》2021,21(24):10134-10139
为了实现超疏表面上液滴的接触角测量,提出了基于液滴局部轮廓的接触角测量方法,通过超疏水表面的接触角测量实验对所提出的测量方法进行了验证。结果表明:基于液滴局部轮廓的接触角测量方法能有效稳定地测量出超疏水表面上的液滴接触角值;实施提出的接触角测量方法时需要测量点均布在液滴高度的2/5范围内的液滴轮廓上;基于液滴局部轮廓的接触角测量方法中接触点的选择误差对接触角测量结果的影响是可控的。可见基于液滴局部轮廓的接触角测量方法可用于表征表面的润湿性能。  相似文献   

18.
为了优化换热器结构以提高其除霜性能,通过水平圆管结霜可视化实验台对受限空间内结霜过程进行了实验研究,分析了霜层厚度沿管长方向的生长规律、结霜量和热流量随时间的变化规律,以及湿空气初始流速、温度、相对湿度和管壁温度等因素对圆管表面结霜量和热流量的影响。实验结果表明:结霜初期,霜层厚度沿管长方向逐渐升高;之后,圆管中部的霜层最厚,靠近入口的霜层厚度最小;融霜最先发生于空气流道出口处;结霜量随时间延长呈现增长趋势,而热流量呈现先增大后减小的趋势;较高的湿空气流速、湿空气温度、相对湿度和较低的壁面温度对应较大的结霜量和热流量,其中管壁温度对结霜量和热流量影响相对较小。实验所获得的结霜特性与换热规律对换热器设计具有一定的参考价值。  相似文献   

19.
为了研究余弦微槽结构的疏水性和冷凝传热性能,首先制备了不同槽峰高度和槽距的微米级余弦槽结构表面,实验研究了不同结构微槽表面的静态接触角及其对滴状冷凝传热性能的影响,并对冷凝传热过程中液滴在微槽表面合并、脱落过程进行实验研究和热力学分析。结果表明,液滴在微槽表面的疏水性和传热性能都呈现明显的各向异性,横向静态接触角θ⊥明显高于纵向接触角θ∥。同时,冷凝传热过程中竖直纵槽阻碍液滴的横向合并,但其对液滴脱落过程起到极大促进作用,传热性能较光滑表面提高30%~50%,且峰距比越大液滴的脱落半径越小、脱落频率越高,表面传热效率也越高。水平横槽则相反,虽然增大峰距比促进了液滴合并,但却对其脱落过程产生不利影响,导致整体传热性能较纵向槽表面大幅下降,与光滑表面接近。引入表面润湿率对微槽表面的液滴脱落半径进行热力学计算,计算值与实验结果吻合较好,误差在20%以内。  相似文献   

20.
液滴在粗糙表面的表观形态及影响其润湿性转变的因素是十分复杂的.一般来说,液滴在表面的接触形态是其表面润湿特性的直接反映.近来,通过对蒸汽凝结条件下超疏水表面液滴形态的研究,进一步加深了人们对粗糙表面润湿特性的理解.人们通过对不同条件下微结构粗糙表面润湿特性的研究,证实了除Cassie和Wenzel模型外,尚有第3类液滴表观状态的存在.我们对实验数据分析发现,粗糙表面的润湿性可以由液滴在投影面上与固,液/气三相接触的面积比来衡量,提出了一种新的液滴表观接触角的通用计算模型,并对比文献数据,证实了其对表观接触角的预测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号