首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
挖掘关联规则Apriori算法的一种改进   总被引:1,自引:0,他引:1  
本研究在对Apriori算法分析的基础上,提出了改进的Apriori算法。改进后的算法采用矩阵表示数据库,减少了扫描事物数据库的次数;利用向量运算来实现频繁项集的计数,同时及时地去掉不必要的数据,减少了数据运算,从而提高了算法的运行效率。  相似文献   

2.
挖掘关联规则中Apriori算法的一种改进   总被引:3,自引:0,他引:3  
算法减少连接次数以及扫描数据库的次数从而缩短数据库扫描时间,利用项集有序性改进判断是否进行连接的策略,并利用标志位变化逐步消除无用事务,从而实现了事务压缩和项目压缩, 同时减少了判断时间。实验结果表明,经过优化了的Apriori算法在运行效率上有一定的提高。  相似文献   

3.
数据挖掘中关联规则挖掘算法的改进及其应用   总被引:3,自引:0,他引:3  
对数据挖掘技术中经典的关联规则挖掘算法Apriori和AprioriTid进行了分析,针对其中不足,提取两种算法的优点,给出了算法的改进,并在贵州电力综合数据平台中进行了应用分析。  相似文献   

4.
关联规则Apriori算法的改进   总被引:7,自引:0,他引:7  
Apriori算法是关联规则提取的经典算法,但存在一些不足之处。关联算法的研究主要集中在提高Apriori算法的效率上。本文分析了该算法并进行了改进,使得频繁集产生的同时精简事务集。这种算法及时去掉了不必要的数据,减少了数据运算,从而使算法更优化。  相似文献   

5.
在关联规则挖掘中,Apriori和FP-tree是两种最基本的算法.文章讨论这两种算法的基本思想、数据挖掘步骤、优缺点并以具体的实例描述两种算法的实现过程.深入分析这两种算法为关联规则挖掘算法的扩展和改进奠定了基础.  相似文献   

6.
利用项集有序特性改进Apriori算法   总被引:4,自引:2,他引:4  
Apriori算法是挖掘关联规则的一个经典算法,通过分析、研究该算法的基本思想,并利用项集的有序特性对其进行改进,减少了生成的候选集数量,从而提高算法的效率.  相似文献   

7.
Apriori算法的复杂性研究   总被引:1,自引:0,他引:1  
袁鼎荣  严小卫 《广西科学》2005,12(2):115-117,122
介绍关联规则挖掘及Apriori算法,分析事务数据库的特性及Apriori算法的复杂性,指出频繁项集挖掘算法的优化途径.  相似文献   

8.
在数据库中挖掘关联规则是数据挖掘领域的一个重要的研究课题,在应用中具有非常重要的意义.在分析Apriori算法和IUA算法经典关联规则挖掘算法的基础上,提出了一种基于最近挖掘结果的更新算法称为IIUA.IIUA算法吸收了Apriori算法和IUA算法的优点,在改变最小支持度和基于最近挖掘结果的条件下,从生成尽可能少的候选项集考虑,得到完整的新频繁项集,从而提高算法的效率.  相似文献   

9.
针对Apriori算法存在多次扫描数据库及产生大量候选项集的缺陷,提出了一种改进算法.该算法只需扫描数据库一次,并将事务变换成二进制存储到数据库,可节省存储空间、提高速度.实验结果表明,改进算法挖掘关联规则的效率有较大提高.  相似文献   

10.
针对关联规则中的Apriori算法进行研究,提出了Apriori—B新算法,此算法只需要对交易数据库进行1次搜索,能大量减少I/O次数,且内存开销适中,提高了数据挖掘的效率,具有一定的实用性。  相似文献   

11.
一种基于限制的关联规则数据开采的算法   总被引:2,自引:1,他引:1  
针对海量数据库开采时,现有的关联规则算法效率非常低下的问题,提出一种附加最小保证度的限制,并在此基础上提出一种新开采算法,可减少频繁项目集的数量,并显著地降低I/O时间和CPU时间。  相似文献   

12.
关联规则挖掘算法的改进与优化研究   总被引:2,自引:0,他引:2  
首先对Apriori算法过程本身进行了详细的研究.给出了三种改进措施。各种改进措施在特定的应用场合有着明显的优点.均能有效减少存储候选集所占用的空间或算法过程占用的时间。之后着重对强关联规则的生成算法进行了详细讨论.给出了优化算法.实例表明该算法能有效减少相关计算量.比已有算法运算效率明显提高.  相似文献   

13.
关联规则是数据挖掘中的一个重要研究方向.经典的Apriori算法是一种最有影响的挖掘布尔型关联规则频繁项集的算法,但其并不适合挖掘近年来兴起的多维数据模型.在改进Apriori算法的基础上,提出了一种"二次剪枝"的算法,此算法适用于挖掘多维关联规则,并且在一定程度上提高了算法效率.  相似文献   

14.
关联规则的挖掘是数据挖掘中的一个重要课题.实际应用中事务数据库不断更新,而发现频繁项集代价较高,因此需要提出用于数据库中关联规则的维护算法.本文提出了基于矩阵的MFUP(matrix fast updata)算法,该算法充分利用原有挖掘结果中候选频繁项集的支持数,能有效减少对数据库的重复扫描次数.实验表明,MFUP算法是高效的.  相似文献   

15.
分析了关联规则挖掘的各种算法,详尽分析和探讨了一种用于挖掘关联规则的矩阵算法并给出了矩阵算法实现过程.矩阵算法扫描数据库一次,然后生成事务矩阵,在矩阵上进行相关的数据挖掘操作.当数据库规模较大时,矩阵算法能够显著提高关联规则挖掘的效率.  相似文献   

16.
为了快速求得数据库中的所有频繁项集,提出一种全新的商品主键算法GMK.该算法基于商品作为主键的数据库,采用一个ID数组记录购买某个项集的ID,然后计算与其连接的项集中具有相同ID的元素个数,从而得到连接项集的支持度.用GMK算法只需要扫描一次数据库,并且可以快速减小计算量,实现简单.实验证明了GMK算法的有效性.  相似文献   

17.
关联规则数据挖掘方法的研究   总被引:1,自引:0,他引:1  
在数据挖掘技术中有很多研究领域,关联规则数据挖掘就是其中一个重要的研究方向,对它进行深入研究不仅有着重要的理论意义,而且有着极其重要的应用价值。分析和研究Apriori算法,针对该算法中存在的效率瓶颈问题,提出了一个改进的挖掘算法FDBM_Apriori算法,并实现了该算法。理论和实验证明,FDBM_Apriori算法具有良好的性能。  相似文献   

18.
随着计算机技术和通信技术的不断发展,用户存储了越来越多、具有很高使用价值的信息,不断涌现的大量信息在给人们带来方便的同时也带来了问题,怎样提取有用信息使得数据挖掘技术应运而生.关联分析是数据挖掘的本质,关联规则挖掘是进行关联分析最常用的方法.在关联规则的Apriori算法的基础上,指出了该算法的不足之处,提出了一种新的改进算法,从而增强了算法的适应性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号