共查询到20条相似文献,搜索用时 15 毫秒
1.
Elchebly M Wagner J Kennedy TE Lanctôt C Michaliszyn E Itié A Drouin J Tremblay ML 《Nature genetics》1999,21(3):330-333
Protein tyrosine phosphatase sigma (PTP-sigma, encoded by the Ptprs gene) is a member of the LAR subfamily of receptor-like protein tyrosine phosphatases that is highly expressed during mammalian embryonic development in the germinal cell layer lining the lateral ventricles of the developing brain, dorsal root ganglia, Rathke's pouch, olfactory epithelium, retina and developing lung and heart. On the basis of its expression and homology with the Drosophila melanogasterorthologues DPTP99 and DPTP100A (refs 5,6), which have roles in the targeting of axonal growth cones, we hypothesized that PTP-sigma may also have a modulating function in cell-cell interactions, as well as in axon guidance during mammalian embryogenesis. To investigate its function in vivo, we generated Ptprs-deficient mice. The resulting Ptprs-/-animals display retarded growth, increased neonatal mortality, hyposmia and hypofecundity. Anatomical and histological analyses showed a decrease in overall brain size with a severe depletion of luteinizing hormone-releasing hormone (LHRH)-immunoreactive cells in Ptprs-/- hypothalamus. Ptprs-/- mice have an enlarged intermediate pituitary lobe, but smaller anterior and posterior lobes. These results suggest that tyrosine phosphorylation-dependent signalling pathways regulated by PTP-sigma influence the proliferation and/or adhesiveness of various cell types in the developing hypothalamo-pituitary axis. 相似文献
2.
Harroch S Furtado GC Brueck W Rosenbluth J Lafaille J Chao M Buxbaum JD Schlessinger J 《Nature genetics》2002,32(3):411-414
Several lines of evidence suggest that tyrosine phosphorylation is a key element in myelin formation, differentiation of oligodendrocytes and Schwann cells, and recovery from demyelinating lesions. Multiple sclerosis is a demyelinating disease of the human central nervous system, and studies of experimental demyelination indicate that remyelination in vivo requires the local generation, migration or maturation of new oligodendrocytes, or some combination of these. Failure of remyelination in multiple sclerosis could result from the failure of any of these processes or from the death of oligodendrocytes. Ptprz encodes protein tyrosine phosphatase receptor type Z (Ptpz, also designated Rptpbeta), which is expressed primarily in the nervous system but also in oligodendrocytes, astrocytes and neurons. Here we examine the susceptibility of mice deficient in Ptprz to experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. We observe that mice deficient in Ptprz show impaired recovery from EAE induced by myelin oligodendrocyte glycoprotein (MOG) peptide. This sustained paralysis is associated with increased apoptosis of mature oligodendrocytes in the spinal cords of mutant mice at the peak of inflammation. We further demonstrate that expression of PTPRZ1, the human homolog of Ptprz, is induced in multiple sclerosis lesions and that the gene is specifically expressed in remyelinating oligodendrocytes in these lesions. These results support a role for Ptprz in oligodendrocyte survival and in recovery from demyelinating disease. 相似文献
3.
4.
Social amnesia in mice lacking the oxytocin gene 总被引:20,自引:0,他引:20
The development of social familiarity in rodents depends predominantly on olfactory cues and can critically influence reproductive success. Researchers have operationally defined this memory by a reliable decrease in olfactory investigation in repeated or prolonged encounters with a conspecific. Brain oxytocin (OT) and vasopressin (AVP) seem to modulate a range of social behaviour from parental care to mate guarding. Pharmacological studies indicate that AVP administration may enhance social memory, whereas OT administration may either inhibit or facilitate social memory depending on dose, route or paradigm. We found that male mice mutant for the oxytocin gene (Oxt-/-) failed to develop social memory, whereas wild-type (Oxt+/+) mice showed intact social memory. Measurement of both olfactory foraging and olfactory habituation tasks indicated that olfactory detection of non-social stimuli is intact in Oxt-/- mice. Spatial memory and behavioural inhibition measured in a Morris water-maze, Y-maze, or habituation of an acoustic startle also seemed intact. Treatment with OT but not AVP rescued social memory in Oxt-/- mice, and treatment with an OT antagonist produced a social amnesia-like effect in Oxt+/+ mice. Our data indicate that OT is necessary for the normal development of social memory in mice and support the hypothesis that social memory has a neural basis distinct from other forms of memory. 相似文献
5.
6.
Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori 总被引:4,自引:0,他引:4
Fujikawa A Shirasaka D Yamamoto S Ota H Yahiro K Fukada M Shintani T Wada A Aoyama N Hirayama T Fukamachi H Noda M 《Nature genetics》2003,33(3):375-381
The vacuolating cytotoxin VacA produced by Helicobacter pylori causes massive cellular vacuolation in vitro and gastric tissue damage in vivo, leading to gastric ulcers, when administered intragastrically. Here we report that mice deficient in protein tyrosine phosphatase receptor type Z (Ptprz, also called PTP-zeta or RPTP-beta, encoded by Ptprz) do not show mucosal damage by VacA, although VacA is incorporated into the gastric epithelial cells to the same extent as in wild-type mice. Primary cultures of gastric epithelial cells from Ptprz+/+ and Ptprz-/- mice also showed similar incorporation of VacA, cellular vacuolation and reduction in cellular proliferation, but only Ptprz+/+ cells showed marked detachment from a reconstituted basement membrane 24 h after treatment with VacA. VacA bound to Ptprz, and the levels of tyrosine phosphorylation of the G protein-coupled receptor kinase-interactor 1 (Git1), a Ptprz substrate, were higher after treatment with VacA, indicating that VacA behaves as a ligand for Ptprz. Furthermore, pleiotrophin (PTN), an endogenous ligand of Ptprz, also induced gastritis specifically in Ptprz+/+ mice when administered orally. Taken together, these data indicate that erroneous Ptprz signaling induces gastric ulcers. 相似文献
7.
8.
Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat 总被引:30,自引:0,他引:30
Smith SJ Cases S Jensen DR Chen HC Sande E Tow B Sanan DA Raber J Eckel RH Farese RV 《Nature genetics》2000,25(1):87-90
Triglycerides (or triacylglycerols) represent the major form of stored energy in eukaryotes. Triglyceride synthesis has been assumed to occur primarily through acyl CoA:diacylglycerol transferase (Dgat), a microsomal enzyme that catalyses the final and only committed step in the glycerol phosphate pathway. Therefore, Dgat has been considered necessary for adipose tissue formation and essential for survival. Here we show that Dgat-deficient (Dgat-/-) mice are viable and can still synthesize triglycerides. Moreover, these mice are lean and resistant to diet-induced obesity. The obesity resistance involves increased energy expenditure and increased activity. Dgat deficiency also alters triglyceride metabolism in other tissues, including the mammary gland, where lactation is defective in Dgat-/- females. Our findings indicate that multiple mechanisms exist for triglyceride synthesis and suggest that the selective inhibition of Dgat-mediated triglyceride synthesis may be useful for treating obesity. 相似文献
9.
Nair KS Hmani-Aifa M Ali Z Kearney AL Ben Salem S Macalinao DG Cosma IM Bouassida W Hakim B Benzina Z Soto I Söderkvist P Howell GR Smith RS Ayadi H John SW 《Nature genetics》2011,43(6):579-584
Angle-closure glaucoma (ACG) is a subset of glaucoma affecting 16 million people. Although 4 million people are bilaterally blind from ACG, the causative molecular mechanisms of ACG remain to be defined. High intraocular pressure induces glaucoma in ACG. High intraocular pressure traditionally was suggested to result from the iris blocking or closing the angle of the eye, thereby limiting aqueous humor drainage. Eyes from individuals with ACG often have a modestly decreased axial length, shallow anterior chamber and relatively large lens, features that predispose to angle closure. Here we show that genetic alteration of a previously unidentified serine protease (PRSS56) alters axial length and causes a mouse phenotype resembling ACG. Mutations affecting this protease also cause a severe decrease of axial length in individuals with posterior microphthalmia. Together, these data suggest that alterations of this serine protease may contribute to a spectrum of human ocular conditions including reduced ocular size and ACG. 相似文献
10.
The initial stages of pancreatic development occur early during mammalian embryogenesis, but the genes governing this process remain largely unknown. The homeodomain protein Pdx1 is expressed in the developing pancreatic anlagen from the approximately 10-somite stage, and mutations in the gene Pdx1 prevent the development of the pancreas. The initial stages of pancreatic development, however, still occur in Pdx1-deficient mice. Hlxb9 (encoding Hb9; ref. 6) is a homeobox gene that in humans has been linked to dominant inherited sacral agenesis and we show here that Hb9 is expressed at early stages of mouse pancreatic development and later in differentiated beta-cells. Hlxb9 has an essential function in the initial stages of pancreatic development. In absence of Hlxb9 expression, the dorsal region of the gut epithelium fails to initiate a pancreatic differentiation program. In contrast, the ventral pancreatic endoderm develops but exhibits a later and more subtle perturbation in beta-cell differentiation and in islet cell organization. Thus, dorsally Hlxb9 is required for specifying the gut epithelium to a pancreatic fate and ventrally for ensuring proper endocrine cell differentiation. 相似文献
11.
Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. 总被引:23,自引:0,他引:23
M Tartaglia E L Mehler R Goldberg G Zampino H G Brunner H Kremer I van der Burgt A H Crosby A Ion S Jeffery K Kalidas M A Patton R S Kucherlapati B D Gelb 《Nature genetics》2001,29(4):465-468
Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000-2,500 live births. It has been mapped to a 5-cM region (NS1) [corrected] on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)-a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains-cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity. 相似文献
12.
Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2 总被引:12,自引:0,他引:12
Coste SC Kesterson RA Heldwein KA Stevens SL Heard AD Hollis JH Murray SE Hill JK Pantely GA Hohimer AR Hatton DC Phillips TJ Finn DA Low MJ Rittenberg MB Stenzel P Stenzel-Poore MP 《Nature genetics》2000,24(4):403-409
The actions of corticotropin-releasing hormone (Crh), a mediator of endocrine and behavioural responses to stress, and the related hormone urocortin (Ucn) are coordinated by two receptors, Crhr1 (encoded by Crhr) and Crhr2. These receptors may exhibit distinct functions due to unique tissue distribution and pharmacology. Crhr-null mice have defined central functions for Crhr1 in anxiety and neuroendocrine stress responses. Here we generate Crhr2-/- mice and show that Crhr2 supplies regulatory features to the hypothalamic-pituitary-adrenal axis (HPA) stress response. Although initiation of the stress response appears to be normal, Crhr2-/- mice show early termination of adrenocorticotropic hormone (Acth) release, suggesting that Crhr2 is involved in maintaining HPA drive. Crhr2 also appears to modify the recovery phase of the HPA response, as corticosterone levels remain elevated 90 minutes after stress in Crhr2-/- mice. In addition, stress-coping behaviours associated with dearousal are reduced in Crhr2-/- mice. We also demonstrate that Crhr2 is essential for sustained feeding suppression (hypophagia) induced by Ucn. Feeding is initially suppressed in Crhr2-/- mice following Ucn, but Crhr2-/- mice recover more rapidly and completely than do wild-type mice. In addition to central nervous system effects, we found that, in contrast to wild-type mice, Crhr2-/- mice fail to show the enhanced cardiac performance or reduced blood pressure associated with systemic Ucn, suggesting that Crhr2 mediates these peripheral haemodynamic effects. Moreover, Crhr2-/- mice have elevated basal blood pressure, demonstrating that Crhr2 participates in cardiovascular homeostasis. Our results identify specific responses in the brain and periphery that involve Crhr2. 相似文献
13.
14.
Wu G Markowitz GS Li L D'Agati VD Factor SM Geng L Tibara S Tuchman J Cai Y Park JH van Adelsberg J Hou H Kucherlapati R Edelmann W Somlo S 《Nature genetics》2000,24(1):75-78
PKD2, mutations in which cause autosomal dominant polycystic kidney disease (ADPKD), encodes an integral membrane glycoprotein with similarity to calcium channel subunits. We induced two mutations in the mouse homologue Pkd2 (ref.4): an unstable allele (WS25; hereafter denoted Pkd2WS25) that can undergo homologous-recombination-based somatic rearrangement to form a null allele; and a true null mutation (WS183; hereafter denoted Pkd2-). We examined these mutations to understand the function of polycystin-2, the protein product of Pkd2, and to provide evidence that kidney and liver cyst formation associated with Pkd2 deficiency occurs by a two-hit mechanism. Pkd2-/- mice die in utero between embryonic day (E) 13.5 and parturition. They have structural defects in cardiac septation and cyst formation in maturing nephrons and pancreatic ducts. Pancreatic ductal cysts also occur in adult Pkd2WS25/- mice, suggesting that this clinical manifestation of ADPKD also occurs by a two-hit mechanism. As in human ADPKD, formation of kidney cysts in adult Pkd2WS25/- mice is associated with renal failure and early death (median survival, 65 weeks versus 94 weeks for controls). Adult Pkd2+/- mice have intermediate survival in the absence of cystic disease or renal failure, providing the first indication of a deleterious effect of haploinsufficiency at Pkd2on long-term survival. Our studies advance our understanding of the function of polycystin-2 in development and our mouse models recapitulate the complex human ADPKD phenotype. 相似文献
15.
The vertebrate planar cell polarity (PCP) pathway has previously been found to control polarized cell behaviors rather than cell fate. We report here that disruption of Xenopus laevis orthologs of the Drosophila melanogaster PCP effectors inturned (in) or fuzzy (fy) affected not only PCP-dependent convergent extension but also elicited embryonic phenotypes consistent with defective Hedgehog signaling. These defects in Hedgehog signaling resulted from a broad requirement for Inturned and Fuzzy in ciliogenesis. We show that these proteins govern apical actin assembly and thus control the orientation, but not assembly, of ciliary microtubules. Finally, accumulation of Dishevelled and Inturned near the basal apparatus of cilia suggests that these proteins function in a common pathway with core PCP components to regulate ciliogenesis. Together, these data highlight the interrelationships between cell polarity, cellular morphogenesis, signal transduction and cell fate specification. 相似文献
16.
Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation 总被引:20,自引:0,他引:20
Satokata I Ma L Ohshima H Bei M Woo I Nishizawa K Maeda T Takano Y Uchiyama M Heaney S Peters H Tang Z Maxson R Maas R 《Nature genetics》2000,24(4):391-395
The composite structure of the mammalian skull, which forms predominantly via intramembranous ossification, requires precise pre- and post-natal growth regulation of individual calvarial elements. Disturbances of this process frequently cause severe clinical manifestations in humans. Enhanced DNA binding by a mutant MSX2 homeodomain results in a gain of function and produces craniosynostosis in humans. Here we show that Msx2-deficient mice have defects of skull ossification and persistent calvarial foramen. This phenotype results from defective proliferation of osteoprogenitors at the osteogenic front during calvarial morphogenesis, and closely resembles that associated with human MSX2 haploinsufficiency in parietal foramina (PFM). Msx2-/- mice also have defects in endochondral bone formation. In the axial and appendicular skeleton, post-natal deficits in Pth/Pthrp receptor (Pthr) signalling and in expression of marker genes for bone differentiation indicate that Msx2 is required for both chondrogenesis and osteogenesis. Consistent with phenotypes associated with PFM, Msx2-mutant mice also display defective tooth, hair follicle and mammary gland development, and seizures, the latter accompanied by abnormal development of the cerebellum. Most Msx2-mutant phenotypes, including calvarial defects, are enhanced by genetic combination with Msx1 loss of function, indicating that Msx gene dosage can modify expression of the PFM phenotype. Our results provide a developmental basis for PFM and demonstrate that Msx2 is essential at multiple sites during organogenesis. 相似文献
17.
Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1 总被引:6,自引:0,他引:6
Costa RM Yang T Huynh DP Pulst SM Viskochil DH Silva AJ Brannan CI 《Nature genetics》2001,27(4):399-405
Neurofibromatosis type 1 (NF1) is a commonly inherited autosomal dominant disorder. Previous studies indicated that mice homozygous for a null mutation in Nf1 exhibit mid-gestation lethality, whereas heterozygous mice have an increased predisposition to tumors and learning impairments. Here we show that mice lacking the alternatively spliced exon 23a, which modifies the GTPase-activating protein (GAP) domain of Nf1, are viable and physically normal, and do not have an increased tumor predisposition, but show specific learning impairments. Our findings have implications for the development of a treatment for the learning disabilities associated with NF1 and indicate that the GAP domain of NF1 modulates learning and memory. 相似文献
18.
Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha 总被引:11,自引:0,他引:11
Fruman DA Mauvais-Jarvis F Pollard DA Yballe CM Brazil D Bronson RT Kahn CR Cantley LC 《Nature genetics》2000,26(3):379-382
Phosphoinositide 3-kinases produce 3'-phosphorylated phosphoinositides that act as second messengers to recruit other signalling proteins to the membrane. Pi3ks are activated by many extracellular stimuli and have been implicated in a variety of cellular responses. The Pi3k gene family is complex and the physiological roles of different classes and isoforms are not clear. The gene Pik3r1 encodes three proteins (p85 alpha, p55 alpha and p50 alpha) that serve as regulatory subunits of class IA Pi3ks (ref. 2). Mice lacking only the p85 alpha isoform are viable but display hypoglycaemia and increased insulin sensitivity correlating with upregulation of the p55 alpha and p50 alpha variants. Here we report that loss of all protein products of Pik3r1 results in perinatal lethality. We observed, among other abnormalities, extensive hepatocyte necrosis and chylous ascites. We also noted enlarged skeletal muscle fibres, brown fat necrosis and calcification of cardiac tissue. In liver and muscle, loss of the major regulatory isoform caused a great decrease in expression and activity of class IA Pi3k catalytic subunits; nevertheless, homozygous mice still displayed hypoglycaemia, lower insulin levels and increased glucose tolerance. Our findings reveal that p55 alpha and/or p50 alpha are required for survival, but not for development of hypoglycaemia, in mice lacking p85 alpha. 相似文献
19.
The mammalian inner ear contains organs for the detection of sound and acceleration, the cochlea and the vestibule, respectively. Mechanosensory hair cells within the neuroepithelia of these organs transduce mechanical force generated by sound waves or head movements into neuronal signals. Defects in hair cells lead to deafness and balance defects. Hair cells have stereocilia that are indispensable for mechanosensation, but the molecular mechanisms regulating stereocilia formation are poorly understood. We show here that integrin alpha8beta1, its ligand fibronectin and the integrin-regulated focal adhesion kinase (FAK) co-localize to the apical hair-cell surface where stereocilia are forming. In mice homozygous for a targeted mutation of Itga8 (encoding the alphabeta8 subunit), this co-localization is perturbed and hair cells in the utricle, a vestibular subcompartment, lack stereocilia or contain malformed stereocilia. Most integrin alpha-8beta1-deficient mice die soon after birth due to kidney defects. Many of the survivors have difficulty balancing, consistent with the structural defects of the inner ear. Our data suggest that integrin alpha8beta1, and potentially other integrins, regulates hair-cell differentiation and stereocilia maturation. Mutations affecting matrix molecules cause inherited forms of inner ear disease and integrins may mediate some effects of matrix molecules in the ear; thus, mutations in integrin genes may lead to inner-ear diseases as well. 相似文献
20.
Gilbert SL Zhang L Forster ML Anderson JR Iwase T Soliven B Donahue LR Sweet HO Bronson RT Davisson MT Wollmann RL Lahn BT 《Nature genetics》2006,38(2):245-250
Hypertonia, which results from motor pathway defects in the central nervous system (CNS), is observed in numerous neurological conditions, including cerebral palsy, stroke, spinal cord injury, stiff-person syndrome, spastic paraplegia, dystonia and Parkinson disease. Mice with mutation in the hypertonic (hyrt) gene exhibit severe hypertonia as their primary symptom. Here we show that hyrt mutant mice have much lower levels of gamma-aminobutyric acid type A (GABA(A)) receptors in their CNS, particularly the lower motor neurons, than do wild-type mice, indicating that the hypertonicity of the mutants is likely to be caused by deficits in GABA-mediated motor neuron inhibition. We cloned the responsible gene, trafficking protein, kinesin binding 1 (Trak1), and showed that its protein product interacts with GABA(A) receptors. Our data implicate Trak1 as a crucial regulator of GABA(A) receptor homeostasis and underscore the importance of hyrt mice as a model for studying the molecular etiology of hypertonia associated with human neurological diseases. 相似文献