首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xia XM  Zeng X  Lingle CJ 《Nature》2002,418(6900):880-884
Large conductance, Ca(2+)- and voltage-activated K(+) channels (BK) respond to two distinct physiological signals -- membrane voltage and cytosolic Ca(2+) (refs 1, 2). Channel opening is regulated by changes in Ca(2+) concentration spanning 0.5 micro M to 50 mM (refs 2-5), a range of Ca(2+) sensitivity unusual among Ca(2+)-regulated proteins. Although voltage regulation arises from mechanisms shared with other voltage-gated channels, the mechanisms of Ca(2+) regulation remain largely unknown. One potential Ca(2+)-regulatory site, termed the 'Ca(2+) bowl', has been located to the large cytosolic carboxy terminus. Here we show that a second region of the C terminus, the RCK domain (regulator of conductance for K(+) (ref. 12)), contains residues that define two additional regulatory effects of divalent cations. One site, together with the Ca(2+) bowl, accounts for all physiological regulation of BK channels by Ca(2+); the other site contributes to effects of millimolar divalent cations that may mediate physiological regulation by cytosolic Mg(2+) (refs 5, 13). Independent regulation by multiple sites explains the large concentration range over which BK channels are regulated by Ca(2+). This allows BK channels to serve a variety of physiological roles contingent on the Ca(2+) concentration to which the channels are exposed.  相似文献   

2.
Ramu Y  Xu Y  Lu Z 《Nature》2006,442(7103):696-699
Voltage-gated ion channels in excitable nerve, muscle, and endocrine cells generate electric signals in the form of action potentials. However, they are also present in non-excitable eukaryotic cells and prokaryotes, which raises the question of whether voltage-gated channels might be activated by means other than changing the voltage difference between the solutions separated by the plasma membrane. The search for so-called voltage-gated channel activators is motivated in part by the growing importance of such agents in clinical pharmacology. Here we report the apparent activation of voltage-gated K+ (Kv) channels by a sphingomyelinase.  相似文献   

3.
Vasoregulation by the beta1 subunit of the calcium-activated potassium channel   总被引:20,自引:0,他引:20  
Small arteries exhibit tone, a partially contracted state that is an important determinant of blood pressure. In arterial smooth muscle cells, intracellular calcium paradoxically controls both contraction and relaxation. The mechanisms by which calcium can differentially regulate diverse physiological responses within a single cell remain unresolved. Calcium-dependent relaxation is mediated by local calcium release from the sarcoplasmic reticulum. These 'calcium sparks' activate calcium-dependent potassium (BK) channels comprised of alpha and beta1 subunits. Here we show that targeted deletion of the gene for the beta1 subunit leads to a decrease in the calcium sensitivity of BK channels, a reduction in functional coupling of calcium sparks to BK channel activation, and increases in arterial tone and blood pressure. The beta1 subunit of the BK channel, by tuning the channel's calcium sensitivity, is a key molecular component in translating calcium signals to the central physiological function of vasoregulation.  相似文献   

4.
H L Haas  A Konnerth 《Nature》1983,302(5907):432-434
Ample evidence exists for histaminergic and noradrenergic projections to the hippocampus. Both amines exert neurotransmitter or modulator actions on principal neurones in the CA 1 and in the dentate area. A number of mechanisms have been proposed for these actions, including increased potassium conductance, increased chloride conductance and electrogenic pump stimulation, and reduction of the anomalous inward rectification. Action potentials, and particularly bursts of spikes, in CA 1 pyramidal cells, are followed by an afterhyperpolarization (AHP) which consists of two components. The late AHP depends on a calcium-activated potassium conductance gK+ (Ca2+), and has recently been shown to be increased by dopamine. We report here a rapid and reversible decrease of the late AHP component following a burst of sodium spikes or a calcium spike, during perfusion with micromolar concentrations of histamine and noradrenaline. This effect is mediated by H2 receptors and beta-receptors, respectively, and occurred in the absence of changes in the calcium spike. By such a mechanism histamine and noradrenaline can profoundly potentiate the excitatory impact of depolarizing signals.  相似文献   

5.
Piskorowski R  Aldrich RW 《Nature》2002,420(6915):499-502
In many physiological systems such as neurotransmitter release, smooth muscle relaxation and frequency tuning of auditory hair cells, large-conductance calcium-activated potassium (BK(Ca)) channels create a connection between calcium signalling pathways and membrane excitability. BK(Ca) channels are activated by voltage and by micromolar concentrations of intracellular calcium. Although it is possible to open BK(Ca) channels in the absence of calcium, calcium binding is essential for their activation under physiological conditions. In the presence of intracellular calcium, BK(Ca) channels open at more negative membrane potentials. Many experiments investigating the molecular mechanism of calcium activation of the BK(Ca) channel have focused on the large intracellular carboxy terminus, and much evidence supports the hypothesis that calcium-binding sites are located in this region of the channel. Here we show that BK(Ca) channels that lack the whole intracellular C terminus retain wild-type calcium sensitivity. These results show that the intracellular C terminus, including the 'calcium bowl' and the RCK domain, is not necessary for the calcium-activated opening of these channels.  相似文献   

6.
7.
hERG potassium channels are essential for normal electrical activity in the heart. Inherited mutations in the HERG gene cause long QT syndrome, a disorder that predisposes individuals to life-threatening arrhythmias. Arrhythmia can also be induced by a blockage of hERG channels by a surprisingly diverse group of drugs. This side effect is a common reason for drug failure in preclinical safety trials. Insights gained from the crystal structures of other potassium channels have helped our understanding of the block of hERG channels and the mechanisms of gating.  相似文献   

8.
The open pore conformation of potassium channels   总被引:69,自引:0,他引:69  
Jiang Y  Lee A  Chen J  Cadene M  Chait BT  MacKinnon R 《Nature》2002,417(6888):523-526
Living cells regulate the activity of their ion channels through a process known as gating. To open the pore, protein conformational changes must occur within a channel's membrane-spanning ion pathway. KcsA and MthK, closed and opened K(+) channels, respectively, reveal how such gating transitions occur. Pore-lining 'inner' helices contain a 'gating hinge' that bends by approximately 30 degrees. In a straight conformation four inner helices form a bundle, closing the pore near its intracellular surface. In a bent configuration the inner helices splay open creating a wide (12 A) entryway. Amino-acid sequence conservation suggests a common structural basis for gating in a wide range of K(+) channels, both ligand- and voltage-gated. The open conformation favours high conduction by compressing the membrane field to the selectivity filter, and also permits large organic cations and inactivation peptides to enter the pore from the intracellular solution.  相似文献   

9.
The voltage-gated potassium channels and their relatives   总被引:35,自引:0,他引:35  
Yellen G 《Nature》2002,419(6902):35-42
The voltage-gated potassium channels are the prototypical members of a family of membrane signalling proteins. These protein-based machines have pores that pass millions of ions per second across the membrane with astonishing selectivity, and their gates snap open and shut in milliseconds as they sense changes in voltage or ligand concentration. The architectural modules and functional components of these sophisticated signalling molecules are becoming clear, but some important links remain to be elucidated.  相似文献   

10.
N Stockbridge  W N Ross 《Nature》1984,309(5965):266-268
Calcium channels are found in the presynaptic terminals of neurones, where they have a key role in synaptic transmission. They are also found in the somata of many cells, in dendrites and along a few axons. In no cell is the actual distribution of these channels known in detail, because there are no known toxins or other agents suitable for labelling calcium channels, and the current through these channels is usually too small to be quantified with extracellular electrodes. However, several experiments have suggested that the density of the channels is less in the axon than in the cell body or terminal region. Here we have used the indicator dye Arsenazo III in conjunction with an array of photodetectors to examine the spatial influx of calcium in the presynaptic terminal region of the giant barnacle, Balanus nubilus. In these cells, calcium entry occurs in a restricted region less than 50 micron in length, which corresponds closely to the region of synaptic contact with second-order cells. Outside this area the magnitude of calcium entry is reduced at least 50-fold. With reasonable assumptions it follows that the calcium channel density is equally localized. In addition, we demonstrate that these cells have a calcium-activated potassium conductance. Since calcium entry is restricted to the synaptic zone, this conductance must be effective only in this region.  相似文献   

11.
R L Rosenberg  J E East 《Nature》1992,360(6400):166-169
The functional activity of ion channels and other membrane proteins requires that the proteins be correctly assembled in a transmembrane configuration. Thus, the functional expression of ion channels, neurotransmitter receptors and complex membrane-limited signalling mechanisms from complementary DNA has required the injection of messenger RNA or transfection of DNA into Xenopus oocytes or other target cells that are capable of processing newly translated protein into the surface membrane. These approaches, combined with voltage-clamp analysis of ion channel currents, have been especially powerful in the identification of structure-function relationships in ion channels. But oocytes express endogenous ion channels, neurotransmitter receptors and receptor-channel subunits, complicating the interpretation of results in mRNA-injected eggs. Furthermore, it is difficult to control experimentally the membrane lipids and post-translational modifications that underlie the regulation and modulation of ion channels in intact cells. A cell-free system for ion channel expression is ideal for good experimental control of protein expression and modulatory processes. Here we combine cell-free protein translation, microsomal membrane processing of nascent channel proteins, and reconstitution of newly synthesized ion channels into planar lipid bilayers to synthesize, glycosylate, process into membranes, and record in vitro the activity of functional Shaker potassium channels.  相似文献   

12.
Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane   总被引:10,自引:0,他引:10  
A E Spruce  N B Standen  P R Stanfield 《Nature》1985,316(6030):736-738
It has been known for some years that skeletal muscle develops a high potassium permeability in conditions that produce rigor, where ATP concentrations are low and intracellular Ca2+ is high. It has seemed natural to attribute this high permeability to K channels that are opened by internal Ca2+, especially as the presence of such channels has been demonstrated in myotubes and in the transverse tubular membrane system of adult skeletal muscle. However, as we show here, the surface membrane of frog muscle contains potassium channels that open at low internal concentrations of ATP (less than 2 mM). ATP induces closing of these channels without being split, apparently holding the channels in one of a number of closed states. The channels have at least two open states whose dwell times are voltage-dependent. Surprisingly, we find that these may be the most common K channels of the surface membrane of skeletal muscle.  相似文献   

13.
Enkephalin opens potassium channels on mammalian central neurones   总被引:13,自引:0,他引:13  
J T Williams  T M Egan  R A North 《Nature》1982,299(5878):74-77
  相似文献   

14.
Chloride and potassium channels in cystic fibrosis airway epithelia   总被引:5,自引:0,他引:5  
M J Welsh  C M Liedtke 《Nature》1986,322(6078):467-470
Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.  相似文献   

15.
Voltage-dependent calcium and potassium channels in retinal glial cells   总被引:1,自引:0,他引:1  
E A Newman 《Nature》1985,317(6040):809-811
Glial cells, which outnumber neurones in the central nervous system, have traditionally been considered to be electrically inexcitable and to play only a passive role in the electrical activity of the brain. Recent reports have demonstrated, however, that certain glial cells, when maintained in primary culture, possess voltage-dependent ion channels. It remains to be demonstrated whether these channels are also present in glial cells in vivo. I show here that Müller cells, the principal glial cells of the vertebrate retina, can generate 'Ca2+ spikes' in freshly excised slices of retinal tissue. In addition, voltage-clamp studies of enzymatically dissociated Müller cells demonstrate the presence of four types of voltage-dependent ion channels: a Ca2+ channel, a Ca2+-activated K+ channel, a fast-inactivating (type A) K+ channel and an inward-rectifying K+ channel. Currents generated by these voltage-dependent channels may enhance the ability of Müller cells to regulate extracellular K+ levels in the retina and may be involved in the generation of the electroretinogram.  相似文献   

16.
Ion conduction pore is conserved among potassium channels.   总被引:15,自引:0,他引:15  
Z Lu  A M Klem  Y Ramu 《Nature》2001,413(6858):809-813
Potassium channels, a group of specialized membrane proteins, enable K+ ions to flow selectively across cell membranes. Transmembrane K+ currents underlie electrical signalling in neurons and other excitable cells. The atomic structure of a bacterial K+ channel pore has been solved by means of X-ray crystallography. To the extent that the prokaryotic pore is representative of other K+ channels, this landmark achievement has profound implications for our general understanding of K+ channels. But serious doubts have been raised concerning whether the prokaryotic K+ channel pore does actually represent those of eukaryotes. Here we have addressed this fundamental issue by substituting the prokaryotic pore into eukaryotic voltage-gated and inward-rectifier K+ channels. The resulting chimaeras retain the respective functional hallmarks of the eukaryotic channels, which indicates that the ion conduction pore is indeed conserved among K+ channels.  相似文献   

17.
Gating currents associated with potassium channel activation   总被引:7,自引:0,他引:7  
F Bezanilla  M M White  R E Taylor 《Nature》1982,296(5858):657-659
  相似文献   

18.
门冬氨酸钾镁治疗心律失常疗效评价   总被引:2,自引:0,他引:2  
为评价门冬氨酸钾镁治疗各种心律失常的临床疗效。方法:用常规12导联心电图监测门冬氨酸钾镁治疗组和常规治疗组的心率和心律的变化,同时观察病人临床症状和体征。结论门冬氨酸闰是治疗各种心律失常包括心力衰竭伴心律失常有效而安全的药物。  相似文献   

19.
Mechanism of ion permeation through calcium channels   总被引:27,自引:0,他引:27  
P Hess  R W Tsien 《Nature》1984,309(5967):453-456
Calcium channels carry out vital functions in a wide variety of excitable cells but they also face special challenges. In the medium outside the channel, Ca2+ ions are vastly outnumbered by other ions. Thus, the calcium channel must be extremely selective if it is to allow Ca2+ influx rather than a general cation influx. In fact, calcium channels show a much greater selectivity for Ca2+ than sodium channels do for Na+ despite the high flux that open Ca channels can support. Relatively little is known about the mechanism of ion permeation through Ca channels. Earlier models assumed ion independence or single-ion occupancy. Here we present evidence for a novel hypothesis of ion movement through Ca channels, based on measurements of Ca channel activity at the level of single cells or single channels. Our results indicate that under physiological conditions, the channel is occupied almost continually by one or more Ca2+ ions which, by electrostatic repulsion, guard the channel against permeation by other ions. On the other hand, repulsion between Ca2+ ions allows high throughput rates and tends to prevent saturation with calcium.  相似文献   

20.
Modulation of A-type potassium channels by a family of calcium sensors   总被引:72,自引:0,他引:72  
In the brain and heart, rapidly inactivating (A-type) voltage-gated potassium (Kv) currents operate at subthreshold membrane potentials to control the excitability of neurons and cardiac myocytes. Although pore-forming alpha-subunits of the Kv4, or Shal-related, channel family form A-type currents in heterologous cells, these differ significantly from native A-type currents. Here we describe three Kv channel-interacting proteins (KChIPs) that bind to the cytoplasmic amino termini of Kv4 alpha-subunits. We find that expression of KChIP and Kv4 together reconstitutes several features of native A-type currents by modulating the density, inactivation kinetics and rate of recovery from inactivation of Kv4 channels in heterologous cells. All three KChIPs co-localize and co-immunoprecipitate with brain Kv4 alpha-subunits, and are thus integral components of native Kv4 channel complexes. The KChIPs have four EF-hand-like domains and bind calcium ions. As the activity and density of neuronal A-type currents tightly control responses to excitatory synaptic inputs, these KChIPs may regulate A-type currents, and hence neuronal excitability, in response to changes in intracellular calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号