共查询到19条相似文献,搜索用时 93 毫秒
1.
由于传统的同步定位与建图(simultaneous localization and mapping,SLAM)中有很强的静态刚性假设,故系统定位精度和鲁棒性容易受到环境中动态对象的干扰.针对这种现象,提出一种在室内动态环境下基于深度学习的视觉SLAM算法.基于ORB-SLAM2进行改进,在SLAM前端加入多视角几何,并与YOLOv5s目标检测算法进行融合,最后对处理后的静态特征点进行帧间匹配.实验使用TUM数据集进行测试,结果显示:SLAM算法结合多视角几何、目标检测后,系统的绝对位姿估计精度在高动态环境中相较于ORB-SLAM2有明显提高.与其他SLAM算法的定位精度相比,改进算法仍有不同程度的改善. 相似文献
2.
针对深度相机采集深度图像的噪声对位姿估计精度的影响,以及误差随时间累积的严重问题,设计了一种改进的基于RGB-D相机的视觉SLAM系统.首先,建立重投影误差模型,通过最小化重投影误差,对位姿和特征点进行非线性优化.此外,提出了一种闭环检测的算法,建立字典模型,用频率-逆文档频率计算权重,用Kullback-Leible... 相似文献
3.
针对地下车库环境中无人驾驶汽车视觉同时定位和建图(SLAM)定位精度低的问题,提出一种融合惯性测量单元(IMU)角速度信息和车辆动力学信息的预积分方法.以IMU频率进行旋转预积分,以车辆动力学频率进行平移预积分.在平移预积分的计算中引入角速度信息,使其可以表达非平面运动.首先使用李代数和旋转群推导了相关的预积分公式、雅可比及噪声状态转移方程;然后以此预积分为基础将车辆动力学信息融合到双目视觉惯性SLAM中,以提高定位精度.地下车库实车实验表明:该方法将双目视觉惯性ORB-SLAM3的平均定位精度提高了32%. 相似文献
4.
针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,本文提出一种16线激光和IMU惯性测量单元紧耦合的SLAM算法。首先对IMU进行估计位姿,通过线性插值矫正激光点云的运动畸变;接着通过曲率提取场景特征,并根据不同特征性质进行分类;然后利用帧间匹配模块在滑动窗口内构建局部地图;最后利用帧与局部地图匹配得到的距离和IMU数据构建联合优化函数。借助KITTI数据集和自行录制的园区数据集,对改进算法与主流的Lego-LOAM和同样使用紧耦合方案的LIO-Mapping进行分模块和整个系统的精度评定,实测结果表明,在符合里程计实时性的要求下,改进激光里程计精度高于Lego-LOAM和LIO-Mapping方案。 相似文献
5.
针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出了YOLOv3-ORB-SLAM3算法。该算法在ORB-SLAM3的基础上增加了语义线程,采用动态和静态场景特征提取双线程机制:语义线程使用YOLOv3对场景中动态物体进行语义识别目标检测,同时对提取的动态区域特征点进行离群点剔除;跟踪线程通过ORB特征提取场景区域特征,结合语义信息获得静态场景特征送入后端,从而消除动态场景对系统的干扰,提升视觉SLAM算法定位精度。利用TUM(Technical University of Munich)数据集验证,结果表明YOLOv3-ORB-SLAM3算法在单目模式下动态序列相比ORB-SLAM3算法ATE(Average Treatment Effect)指标下降30%左右,RGB-D(Red, Gree... 相似文献
6.
针对动态电源管理中指数平均预测算法存在的不足,提出了一种改进的指数平均动态电源管理预测算法.该算法结合滑动窗口,加入动态自适应调节因子,充分利用设备空闲状态的历史信息对未来的空闲时间进行预测.实验结果表明该算法对工作状态平稳的系统空闲预测效果良好,预测误差率比原算法降低了8.3%,并具有对样本数量要求少,计算量小,能自适应调整预测参数的优点. 相似文献
7.
提出了一种用于动态环境下视觉同时定位和建图(SLAM)系统的图像预处理方法。该方法可以很容易地集成到现有视觉SLAM系统中,使其在高动态环境下能够稳定、准确和连续的工作。首先,提出了一种综合使用语义分割网络和光流估计网络的动态物体识别算法,鲁棒、准确地识别图像中潜在的动态物体。然后,为了检测与动态物体关联的阴影,提出了一种基于区域生长的阴影识别算法。最后,使用图像补全技术对剔除动态物体后的图像进行补全。将该图像预处理方法与双目ORB-SLAM2结合,并在KITTI数据集上进行了实验,实验表明所提出的图像预处理方法显著地提升了视觉SLAM系统的定位精度,并且图像预处理方法中的每一个模块都有着不可替代的作用。 相似文献
8.
数据流聚类算法是当前数据流研究领域里的重要分支,而滑动窗口是数据流中一种关注近期数据的近似方法,提出一种采用滑动窗口处理数据的优化算法SWStream.算法采用双层架构思想,在线阶段利用滑动窗口树存储概要结构,动态调整窗口大小.而在离线阶段对上一阶段的结果进行宏聚类,得到最后的结果.实验验证本算法有更高的处理效率,也相对节约内存. 相似文献
9.
为了解决余弦相似度算法进行数据清洗时重复与相似的数据会使计算量呈几何级增长的问题,提出了基于N-Gram和动态滑动窗口的改进余弦相似度算法.首先通过计算每条数据的N-Gram值,并对数据进行相似度排序,然后定义初始滑动窗口,其窗口值根据N-Gram值的方差动态调整,最后在每个窗口中根据相似度与阀值判断相似数据.实验结果表明,改进的余弦相似度算法在运行速度上有大幅度提高,数据清洗准确率也得到提升,且该算法适用于海量数据的情形. 相似文献
10.
为了解决直接序列匹配中签名序列存在随机波动和时间轴方向非均匀伸缩,导致相关分析给出的匹配度不高的问题,提出了采用滑动窗口对真实签名进行局部相关性分析的方法.将手写签名按压力划分成若干笔段,研究笔段匹配算法;对分段后的数据序列用滑动窗口算法进行局部相关分析.算例显示,对不同的签名个体而言,总有一些笔段的相关性极高,最小相关系数都达到0.8甚至0.9以上,这些笔段,正是签名者的稳定的签名特征,无论是相关分析法还是特征矢量分类法,滑动窗口局部相关分析都是一种有效的算法. 相似文献
11.
基于特征点的视觉同时定位与构图方法依赖于图像质量以及可提取的特征点数量,且稀疏的特征点不能直观表达环境的结构信息。为此,提出一种将图像的点特征和线段特征融合的双目同时定位与构图方法。算法前端提取图像的点特征和线段特征,进行特征跟踪并完成相机位姿求解,从跟踪线程中分离出特征提取线程,进一步提升了前端线程的帧率。后端采用集束调整对局部地图进行优化,利用基于词袋模型的闭环检测以抑制系统的累积误差。最后结合点线特征共同构建环境地图。在公开数据集上进行了实验,与当前主流算法相比,提出的算法在保证定位精度的同时能够获得更丰富的环境地图,具备较好的鲁棒性与实时性。 相似文献
12.
针对红外图像序列的特点,提出一种动态融合的目标识别与跟踪算法。由图像序列中的运动信息对目标进行提取,得到自适应波门所需的起始波门和灰度双阈值,以及匹配算法所需的基准模板,其后的跟踪, 融各算法为一体,分时机、分场合地给予灵活运用。最后,以实测的红外图像序列对文中提出的算法进行仿真实验,结果表明该融合算法的可行性与有效性。 相似文献
13.
提出了一种用于自动驾驶汽车的低漂移、低延迟的里程计与高精度建图的算法。该方法融合了多种传感器的测量结果,包括车轮编码器、转向盘转角编码器、激光雷达及可选GPS等的测量结果。里程计算法由车轮里程计和激光里程计组成:前者基于车辆运动学模型,高频、实时估计位姿增量,用于点云去畸变和为后者优化位姿提供可用的初值;后者以较低的频率估计车辆的精确位姿变化,以补偿前者累计的误差,其核心是一种基于角度度量的两阶段特征提取方法。建图算法基于因子图,包含激光里程计因子、回环因子和可选GPS因子,通过增量平滑和建图算法优化全局轨迹,在线生成全局地图,其中GPS因子能够自动对齐GPS坐标系和里程计坐标系,逐步融合GPS测量值,解除了算法初始化过程对于GPS的依赖。所提出的方法在自动驾驶汽车平台数据集上进行了评估,并和已开源的部分相关工作进行对比,结果表明它具有更低的漂移率,在本文进行的最大规模的测试中达到了0.53%。相关代码以开源形式供交流参考(https://github.com/Saki-Chen/W-LOAM )。 相似文献
14.
VINS-Mono算法应用于轮式机器人时,由于惯性测量单元(inertial measurement unit, IMU)加速度计信噪比较小,观测尺度不准确,会出现定位精度下降。对此,提出了一种融合单目相机、惯性测量单元和编码器的改进算法。在VINS-Mono初始化和后端优化的目标函数中,增加编码器测量残差项,直接融合由编码器数据计算的速度,增强尺度的可观性,降低定位累积误差,提高了定位精度。另外,针对车轮打滑造成编码器速度测量不准的问题,利用IMU角速度计测量值计算打滑因子,自适应调整编码器残差项在目标函数中的权重及其鲁棒核函数的阈值,减小车轮打滑对定位结果的影响。在两轮移动机器人上的实验表明,改进算法具有较强的鲁棒性,定位精度比VINS-Mono提高了一个数量级。 相似文献
15.
一种移动机器人SLAM中的多假设数据关联方法 总被引:1,自引:0,他引:1
针对移动机器人同时定位与建图(SLAM)中的局部数据关联问题,提出一种基于粒子滤波的多假设数据关联方法.该方法将数据关联问题转换成离散优化问题,利用多个粒子来维持多种数据关联假设,通过计算关联代价来获得粒子权重,用基本剪枝技术在粒子重采样过程中滤除错误的数据关联假设.研究结果表明:该方法弥补了经典的数据关联方法中关联假设一旦确定就不能修改的不足;与ICNN和JCBB数据关联方法相比,该方法能获得更正确的数据关联结果和更高的定位精度. 相似文献
16.
针对采用单一传感器在移动机器人同步定位与构图(SLAM)中存在定位精度低、构图不完整等问题,提出一种基于Kinect视觉传感器和激光传感器信息融合的SLAM算法。首先将Kinect传感器获取的深度图像经过坐标系转换得到三维点云、通过限制垂直方向滤波器过滤三维点云的高度信息、再将剩余三维点云投影到水平面并提取边界点云信息转化为激光扫描数据;然后与激光传感器的扫描数据进行数据级的信息融合;最后输出统一数据实现移动机器人的构图及自主导航。实验结果表明,该方法能够准确的检测小的及特征复杂的障碍物,能够构建更精确、更完整的环境地图,且更好地完成移动机器人自主导航任务。 相似文献
17.
为实现无人软翼飞行器的直线航迹跟踪控制,提出一种基于模拟对象的可变增益鲁棒反步控制方法.基于模拟对象方法建立软翼飞行器的航迹跟踪误差模型,并设计了可变增益反步跟踪控制器,通过合理设计增益参数,消除了部分复杂非线性项,避免了传统反步法中虚拟量高阶导数问题,简化了控制器形式,更有利于工程实现.根据Lyapunov理论设计的鲁棒反馈补偿项,在保证稳定性的同时提高了系统的鲁棒性.将控制器应用于无人软翼飞行器平面直线航迹跟踪控制中,仿真实验表明,所设计的控制器可以实现直线航迹的精确跟踪,且具有很好的鲁棒性. 相似文献
18.
提出了一种在非确定环境下求解SLAM数据关联问题的图匹配算法. 算法建立了SLAM中数据关联的图论模型,对图模型节点提取了不依赖位置信息的形状上下文特征(shape context,SC),最后通过二次加权随机步进算法(reweighted random walks,RRW)得到图匹配问题的优化解. RRW&SC图匹配算法充分利用了路标间的拓扑结构关系以及路标间的形状结构,极大地扩展了数据关联时所依据的几何信息量. 仿真实验结果表明,与传统算法相比,该算法能有效处理SLAM中噪声干扰增加、机器人迷失、路标被动态遮挡等不确定程度高、歧义性大环境中的数据关联. 相似文献
19.
传统的视觉SLAM系统在机器人定位和制图工作中取得了显著的成功,但存在着缺乏场景信息、地图过于稀疏、单目相机初始化困难等亟待解决的问题。本文提出了MNS-SLAM(Monocular-semantic SLAM),将目标检测算法与单目视觉SLAM(同时定位与地图构建)技术相结合,进而构建有助于环境理解的半稠密语义地图。首先,通过目标检测网络YOLOv4检测对象获取边界框和类别信息,通过消失点算法和二次曲面恢复算法由2D目标检测恢复出3D长方体及二次曲面,实现3D物体的位姿初始化。同时,引入了目标间相对位姿不变性的语义约束,构造了语义损失函数,将其添加到BA优化中,最后通过增量式3D线段提取,构建带有物体语义信息的半稠密地图。文中方法在TUM公开数据集和真实场景中进行试验,不仅构建了半稠密地图,同时添加了语义信息,为后端的优化提供了新的约束,相机的绝对和相对位姿误差表现出优于单目ORB-SLAM2的性能,有助于搭载单目相机的移动机器人感知和理解环境,执行更复杂的任务。 相似文献