首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
脉冲涡流检测集总参数模型   总被引:1,自引:0,他引:1  
针对已有脉冲涡流集总参数模型的不足,建立了具有一般性的脉冲涡流集总参数模型.首先将导体试件中的脉冲涡流场等效为一簇沿深度方向排开的同轴等半径的涡流环;然后建立了涡流随时间和空间分布的偏微分矩阵方程,推导了涡流回线的电阻、自感与互感计算公式;接着阐述了系统矩阵的特征值和特征向量的物理意义;最后使用有限差分法求解了模型实例的矩阵方程,并进行了实验验证.该模型推导、求解简单,适用于任意厚度的被测试件,能准确地模拟瞬态涡流场的扩散过程,也能预知试件厚度变化时线圈感应电压的变化情况.  相似文献   

2.
针对脉冲涡流进行缺陷检测经常受到激励磁场和背景磁噪声干扰的问题,提出对缺陷处进行铁磁屏蔽的方法。在脉冲涡流检测中的磁屏蔽理论分析基础上,建立了脉冲涡流检测的有限元仿真模型。仿真表明:对于铁磁性构件,铁磁屏蔽能够使感应涡流尽可能地分布在缺陷附近,该措施减弱了检测信号的幅值,但对于不同深度的缺陷能够更好的辨别,能有效提高缺陷检测的灵敏度。根据有限元仿真结果,制作了铁磁性材料的磁屏蔽罩。实验表明:在铁板的表面,铁磁屏蔽能有效提高其检测信号灵敏度,而在铁板亚表面,灵敏度获得的提升较小。  相似文献   

3.
脉冲涡流检测是电涡流检测技术的一个最新研究,激励源采用一定占空比的方波信号.结合虚拟仪器技术,设计了一种USB接口的直接数字合成的脉冲涡流激励源.实验结果表明该激励源有占空比(10%~90%),频率(0.5k~500kHz)连续可调,分辨率高(0.011 6Hz),稳定可靠,界面友好等优点,能够满足脉冲涡流探头驱动要求,具有一定应用前景.  相似文献   

4.
有限厚铁磁性试件脉冲涡流响应研究   总被引:1,自引:0,他引:1  
提出了通过直接分析瞬变涡流和感应磁场来研究被测试件脉冲涡流响应的方法.在实验验证的基础上,采用数值模拟的方法计算得到了有限厚铁磁性试件的脉冲涡流响应.研究了试件中涡流扩散规律并将脉冲涡流响应分为前后2个阶段,将相同时间点不同电阻率、磁导率模型的响应曲线及感应电压随时间变化的曲线进行拟合,得到了感应电压与电阻率、磁导率及时间的关系.结果表明:脉冲涡流前期感应电压按试件电阻率的0.5次幂、磁导率的0.5次幂进行衰减,按时间的1.5次幂进行衰减;后期感应电压随时间按照负指数规律衰减,指数衰减系数与试件电阻率成正比,与磁导率成反比.  相似文献   

5.
基于新型脉冲涡流传感器的裂纹缺陷定量检测技术   总被引:1,自引:0,他引:1       下载免费PDF全文
传统脉冲涡流检测技术采用反射型传感器,其通过一个圆柱形的激励线圈来产生激励磁场,采用检测线圈或霍尔传感器来检测扰动磁场,然而由于激励磁场要比缺陷引起的扰动磁场强很多,使得这种结构的传感器对缺陷的检测灵敏度不高,需采用差分的方法来增强缺陷信息.提出了一种新型脉冲涡流传感器,其通过采用矩形激励线圈来改变激励场的空间分布,使得无需差分就可以对缺陷进行定量.在分析该新型脉冲涡流传感器检测原理的基础上,采用仿真和实验相结合的方法研究了其对裂纹缺陷长度和深度进行定量的效果,仿真与实验结果相一致,证明了该传感器的有效性.  相似文献   

6.
面向无损检测仪器图像化发展趋势,设计一种基于虚拟仪器的脉冲涡流扫描成像无损检测系统。首先分析系统的总体框架及其工作原理。重点介绍系统中的扫描机械机构、系统硬件结构及虚拟仪器软件。此检测系统基于LabVIEW成像平台,通过直接对缺陷成像,有助于检测人员更直接地理解和分析缺陷。  相似文献   

7.
针对铁磁性构件损伤探测问题,提出了二维大津法(Ostu)与多尺度形态学梯度边缘检测相结合的方法,该方法基于脉冲涡流热成像的缺陷无损检测技术,处理分析红外图像,得到缺陷边缘特征,用于监测铁磁性构件的健康状态。首先利用脉冲涡流热成像装置对铁磁性构件加热,并使用红外热像仪摄取红外图像;然后利用二维Ostu算法对获得的红外图像进行分割,得到二值缺陷区域,并对其进行连通性计算,从而得到涡流线圈内缺陷区域,提取裂纹缺陷;最后对所得裂纹缺陷进行多尺度形态学梯度边缘检测,并运用物象关系,测量缺陷几何尺寸。构件缺陷试验证明该方法对缺陷边缘检测效果良好,实现了铁磁性构件缺陷的无损检测。  相似文献   

8.
脉冲涡流检测是无损检测的一个重要方法.由于检测过程噪声的干扰,信号在测量过程中不可避免的受到不同程度的污染.文章介绍了提升小波的基本原理、阐述了提升小波去噪的算法.利用提升小波对脉冲涡流检测过程中的噪声进行去噪,得到了去噪后的结果波形.实验结果表明,采用提升小波去噪可以使脉冲涡流检测结果信号的信噪比得到显著的提高.  相似文献   

9.
在脉冲涡流检测过程中,由于探头倾斜或被测对象表面不光滑会产生提离效应,提离效应严重影响着脉冲涡流无损检测的结果。本文在分析脉冲涡流检测技术工作原理的基础上,采用ANSYS有限元仿真软件建立了激励线圈为圆柱形和矩形两种结构的模型,并分别针对有裂纹缺陷的铁磁性(钢)和非铁磁性(铝)试件进行了仿真研究,通过分析试件中感应涡流和扰动磁场的变化,给出了不同情况下检测信号随提离变化的规律,并从原理上给出了解释。最后,通过实验的方法对仿真结果进行了验证,实验结果表明了仿真结果的正确性,从而为进一步的消除提离效应提供了有价值的参考依据。  相似文献   

10.
针对航空铝合金试件体积较大的问题,建立了阵列式脉冲涡流探头有限元仿真模型,根据脉冲涡流趋肤效应及能量分布原理,设计了MAX038仿真模型产生激励信号并加载于阵列线圈上,通过优化线圈参数实现了试件缺陷的定量检测。结果表明,仿真模型激励信号加载于线圈上生成的磁场分布,与模拟激励相似但更接近实际情况。优化后的线圈提高了缺陷识别灵敏度和分辨率,在缺陷检测中表面缺陷宽度与特征信号峰值成正比,缺陷深度与特征信号峰值成指数关系。  相似文献   

11.
提出了一种表贴式带保护套永磁同步电机转子涡流损耗的快速解析模型,同时考虑了定子时空谐波、涡流反作用和永磁体周向分段3种情况。在考虑永磁体周向分段时,忽略次生谐波及其耦合影响,以简化计算过程。将此解析模型应用在6相24槽14极永磁同步电机上,首先对其结果进行收敛性分析,减少截断误差的同时提高了计算效率;然后用时步有限元法等进行精度验证,得到的平均涡流损耗与本模型解析解较为吻合;最后由解析模型,绘制永磁体层中的涡流电密图。本解析模型可以快速得到涡流损耗的响应面,为电机设计及优化迭代提供理论依据。  相似文献   

12.
本文对带Robin边界条件的分数阶对流-扩散方程进行了数值研究.本文利用移位Grünwald公式对Riemann-Liouville空间分数阶导数进行离散,在此基础上建立一种隐式有限差分格式,并讨论了它差分解的存在唯一性,然后分析了该格式的相容性、稳定性和收敛性,最后通过数值算例验证格式是可靠和有效的.  相似文献   

13.
保温管的偏心检测对防腐保温管的生产质量及使用寿命有重要影响。基于偏心检测的原理,提出了一种可消除管道自身形变的涡流传感器布置方式。利用电磁场数值计算方法,对非轴对称涡流场模型进行了数值分析,求得了管道表面的涡流密度与磁感应强度;并验证模型的正确性,分析了管径大小、激励频率对偏心检测中涡流传感器灵敏度的影响。理论上为保温管偏心检测涡流传感器激励频率的选择以及信号的误差分析提供了参考。  相似文献   

14.
基于三维运动涡流场的有限元模型,分析了永磁涡流联轴器的电磁场分布,进而计算出主从转轴传递的功率和转矩.并研究了永磁体和铜盘的尺寸对装置特性的影响,得到永磁涡流联轴器的初步优化设计方案.永磁体占空比a确定在0.7左右;永磁体厚度hm选在其与输出功率P的关系曲线的拐点处较为合适;确定永磁极对数时,应根据不同的永磁体占空比确保扇形永磁体平均半径处的弧长l与径向宽度wm之比在相应范围内;铜盘厚度hcu在6~9mm范围内选取;铜盘内外径应根据铜盘径向宽度wcu与wm比值在1.2~1.6之间确定.最后通过样机实验验证了计算方法的正确性.  相似文献   

15.
文章利用圆柱形导体件涡流磁场分布的相关理论,引用通用参数.n推导出用于测量非铁磁性圆柱导体材料的半径a和有效电导率σ的数学公式;通过微分方法建立了半径和有效电导率相对增量的等式,进而建立了测量非铁磁圆柱体导体被测件半径a和有效电导率σ的差动式涡流检测的数学模型。  相似文献   

16.
利用正则参数随迭代次数变化的最佳摄动量算法对一维溶质运移模型中基于通量边界的源项系数进行了数值反演.讨论了预估迭代次数,入流端的定通量输入浓度,反演空间以及数据随机扰动对该算法的影响.数值结果表明该算法对此类反问题是有效的.  相似文献   

17.
本文研究了一类具有罗宾边值条件的二阶奇摄动右端不连续微分方程,用边界层函数法构造了该类方程解的渐近表达式,最后用缝接法证明了该问题解的存在性,并给出了渐近解的余项估计.  相似文献   

18.
庄会东  张晓东 《科学技术与工程》2012,12(26):6794-6797,6809
依据电磁感应原理,变化磁场周围的导体会受到电磁力的作用,依靠该效应的涡流驱动快速充气阀已经在中科院等离子体所研制成功,通过利用ANSYS有限元分析软件,计算不同的脉冲电流及不同线圈电感及线圈与阀芯不同间距情况下的导体所受电磁力的不同,找到影响电磁力的主要因素,为快阀的改进提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号